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Understanding spatio-temporal patterns of soil organic carbon (SOC) is critical for global climate
change mitigation and sustainable soil management. However, information on long term dynamics of
SOC over large area is lacking. Supported by soil samples collected over years and environmental
covariates, space and time digital soil mapping (ST-DSM) has become an important and effective
method to reveal the spatio-temporal changes of SOC. The contiguous United States (CONUS) has
abundant and well-documented soil samples with time labels, which lays the groundwork for us to
estimate the long-term SOC dynamics in multiple soil layers over that region with high resolution.
Specifically, we propose leveraging time-series soil data fromWorld Soil Information Service (WoSIS)
and International Soil Carbon Network (ISCN) to build ST-DSMmodels at different soil depths based
on matching environmental covariates and machine learning techniques (random forest framework).
Then, multi-depth ST-DSM models are employed to generate spatial prediction of SOC in different
layers (0–15 cm, 15–30 cm, 30–60 cm and 60–100 cm) from 1955 to 2014 at 250m resolution and
5-year intervals (1955–1959, 1960–1964,…., 2010–2014). Meanwhile, predictive uncertainties are
quantified via Quantile Regression Forest (QRF). Furthermore, we analyze the dynamic trends in SOC
stocks across various depths and land uses. The results indicate that over 60 years, overall SOC
stocks in 0–100 cmdemonstrate amulti-stage changeof “rising-fluctuating”. SOCstocks in 0–100 cm
rose from 68.40 Pg (1 Pg = 10^15 g) to 70.33 Pg with an increase rate of 32.25 Tg (1 Tg = 10^12 g) per
year. SOC stocks in 0–15 cm layer declined slightly before 1970 and increased thereafter; the
15–100 cm layer fluctuatedwith anoverall rising trend; notably, the 60–100 cm layer exhibited a steady
upward trendwithminimal fluctuations since 1980s, suggesting agreater SOCaccumulation potential
in soil beneath 15 cm. Across different land uses, the topsoil of cropland may be a source of carbon,
while forests are important carbon sinks. SOC stocks in surface soil (0–15 cm) in cropland areas
notably decreased, and subsurface and deep soil in cropland (15–30 cm, 30–60 cm and 60–100 cm)
showed a fluctuating rising trend. SOC stocks in forest show an overall fluctuating rising trend.
Pastureland, unmanaged natural grasslands and sparse/no vegetation areas once showed some
carbon sequestration capacity in the past, but they have transitioned to slower accumulation. This
research enhances our understanding of soil carbon dynamics at a national scale and provides
references for the development of effective soil management and climate mitigation strategies.

Soil organic carbon (SOC) plays a pivotal role in providing essential
ecosystem services, including climate regulation, plant growth, and water
retention1,2. The upper 1 meter of soil is estimated to hold 1550 Pg (1
Pg = 10^15 g) of SOC stocks at the global scale3, representing about two-

thirds of the world’s terrestrial carbon stocks4,5. Even a small change in SOC
can have a notable impact on atmospheric CO₂ concentrations. In the
context of global climate change, the fate of SOC is of special concern and its
role in natural climate solutions is being increasingly recognized6,7. SOC
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dynamics depend on multiple natural and anthropogenic factors that
influence carbon input and output. Due to the spatial and temporal varia-
tion of influencing factors, the distribution of SOC over regions is highly
heterogeneous and can change with time, posing challenges to accurately
predicting future climate change and developingmanagement strategies for
carbon sequestration8–11. Understanding the spatio-temporal variation of
SOC at regional or national scales is therefore essential for global climate
change mitigation and sustainable soil management12.

Attempts have been made to map the distribution of SOC on a large
scale. Some publicly available global and national soil databases, such as
SoilGrids13, the Harmonized World Soil Database (HWSD), the State Soil
Geographic (STATSGO) database, the Soil Survey Geographic (SSURGO)
database, and the Unified North American Soil Map (UNASM), provide
maps of soil properties at global and national scales produced with con-
ventional or digital soil mapping methods14. However, these maps were all
created for one single time point and cannot support time series analysis.
Information on long-term SOC dynamics at large scale is still lacking.

Insights on spatio-temporal changes of SOC can be gained through
revisited temporal sampling15. However, revisited soil samples are sparse
because soil sampling is costly and there is no systematic soil monitoring
network2,15. This lack of revisited temporal sampling data poses a notable
obstacle to quantifying spatio-temporal change of SOC16,17. Process-based
modeling is another way to predict the temporal change of soil properties
from site-level to regional scale18,19, as they simulate the underlying
physicochemical processes of the soil carbon cycle20,21. These models
typically establish a static baseline SOC map and then estimate SOC
changes by incorporating factors such as climate, land use, management
practices, and carbon inputs18,19. However, achieving high-resolution
prediction of SOC through process-based modeling remains challenging.
For one thing, spatially explicit input data required for process-based
models, such as detailed information on agricultural management
practices over large areas, are often difficult to obtain22,23. For another,
parameterizing models for large-scale applications is difficult, as it is
unrealistic to assume that parameters are spatially invariant in the case of
large-scale applications18.

Digital soil mapping (DSM) serves as an efficient and cost-effective
method to predict the spatio-temporal pattern of SOC. The basic process of
DSM is to construct the relationship between the target soil property and
predictors/environmental covariates using soil sample data, and then make
prediction based on environmental data24–26. Space and time DSM (ST-
DSM)has recently beendeveloped tomodel changes in soil properties2,18,27,28.
With data from soil samples collected at certain time and matching envir-
onmental covariates, prediction can be made for each relevant time point16.
ST-DSM can effectively quantify and capture the spatio-temporal dynamics
of SOC stocks and provide estimated prediction uncertainties18,29. The
reliability of results generated using ST-DSM relies on good spatial and
temporal representativeness of samples30. As a result, ST-DSMhas only been
empirically tested in a limited number of regions, and its feasibility at larger
scales over long term remains unvalidated. Furthermore, most ST-DSM
studies have primarily concentrated on surface soils and single depth21,31.
Because of the lack of sufficient sample data support or reasonable data
integration across different databases, comprehensive research with large-
scale, long-time-series, high-resolution and multi-depth data is often rare.

Analyses of the global carbon cycle indicate that the SOC of North
America plays a notable role in the global carbon budget, acting as a
potential biospheric sink for atmospheric CO2

32,33. The contiguous United
States (CONUS) is an important study area for investigating SOCdynamics
due to its extensive diversity in climatic conditions, land cover types, and
land use practices. Thanks to systematic soil surveys, soil sample data from
the U.S. is relatively abundant andwell-documented34–36. Some studies have
estimated SOC stocks using the average SOC values of each land resource
region based on the STATSGOand SSURGOdatabases, such asGuo et al.36,
Franzmeier et al.34 and Sims andNielsen35. However, this approach does not
fully account for the heterogeneity of soil and environmental variables
within each stratum29,37. Process-based modeling has also been used to

estimate SOC stocks in the CONUS32,38, but these studies may lack robust
precision validation using widely distributed measured SOC samples.

DSM-based approaches have also been adopted for estimating SOC
stocks in the U.S. For instance, Guevara et al.39 used a simulated annealing
regression framework to predict the spatial distribution of surface SOC
density of 0–30 cm soil (with 10,385 samples) across CONUS from 1991 to
2010 at a 250m spatial resolution,finding that SOC stockswere ~30% lower
than estimates from SoilGrids and HWSD. Wang et al.40 applied unsu-
pervised multivariate geographic clustering (MGC) to divide CONUS into
20 SOC regions based on environmental similarity, and employed super-
vised random forest (RF) regression on more than 20,000 soil samples at
depths of 0–30 cm and 30–100 cm to model each region separately. Gon-
çalves et al.41 employed geographically weighted regression (GWR) to
estimate SOC stocks at 0–100 cm based on 4559 soil samples across 21
ecoregions in CONUS and projected SOC stocks changes from 2030 to
2100.Despite these advancements, few studieshave fully leveragedhistorical
soil sampling data from CONUS, with well-defined sampling times, to
capture the spatial and temporal dynamics of SOC stocks over several
decades. Multi-depth, long-time-series, high-resolution dynamic SOC data
for the CONUS region remain limited.

To address this, we propose leveraging time-series soil sample point
data from World Soil Information Service (WoSIS) and International Soil
Carbon Network (ISCN) to build ST-DSMmodel based on environmental
covariates and machine learning techniques, specifically using a RF fra-
mework.Our goal is to bridge the gap in long-termSOCdensity distribution
over the CONUS from 1955 to 2014. The generated data include multi-
depth (0–15, 15–30, 30–60 and 60–100 cm) SOCdensitymaps for CONUS,
at 250m spatial resolution and 5-year temporal intervals (1955–1959,
1960–1964,…., 2010–2014), with predictive uncertainty quantified via
Quantile Regression Forest (QRF). We analyze dynamic trends in SOC
stocks across various depths and land uses. Methodologically, we demon-
strate the feasibility of ST-DSM for large-scale, long-time-series, high-
resolution, and multi-depth DSM applications. This research offers a
detailed view of the spatial and temporal patterns of SOC stocks across
CONUS over more than half a century, serving as valuable foundation for
understanding global carbon cycle and climate mitigation strategy-making.
Figure 1 shows the methodological framework of this study.

Results
Model training, accuracy assessment and environmental cov-
ariate importance
The hyperparameters and the selected covariates for models of different
depths are presented in Table 1. Except for the surface layer (0–15 cm), the
RFE selection process removed relatively few covariates from the complete
set of 59. Most covariates were retained, indicating that while fewer cov-
ariates were initially used in this study compared to SoilGrids13, the final
number of covariates post-RFE selection was comparable to those used in
SoilGrids. The model reached stable accuracy with ~15 covariates; any
additional covariates contributed to only marginal improvements in pre-
diction accuracy. In this study, the number of trees (ntree) ranged from 100
to 200, and the mtry was set to 1, which aligns with the default settings
commonly used in RF models.

The cross-validation results for each depth throughout the whole
period (60 years) are summarized in Fig. 2 (displaying LCCC, R², and
RMSE). Additionally, the cross-validation results and scatter plots for
each year at different depths can be found in Supplementary Fig. 1. The
LCCC values were 0.63, 0.60, 0.54, and 0.51 for the depth ranges of
0–15 cm, 15–30 cm, 30–60 cm and 60–100 cm, respectively. Corre-
spondingly, the R² values were 0.48, 0.46, 0.41, and 0.38, respectively.
These accuracy metrics are comparable to those of other large scale
DSM products, such as SoilGrids13,42. Overall, a decreasing trend in
accuracy with increasing depth was observed, which aligns with the
findings of most DSM studies42,43. This decline may be attributed to
the diminishing relationship between environmental variables and the
properties of deeper soil layers.
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Variable importance analysis from the RF modeling highlights soil-
related covariates (i.e., CEC, clay) as the most influential predictors, espe-
cially for deeper soils (Supplementary Fig. 2). Among the dynamic climate
variables, precipitation-related covariates (i.e., cm_prec_mean and
cm_prec_mean_season1-4) consistently rank highest in importance across
all soil depths, underscoring the key role of precipitation in driving the
temporal dynamics of SOC. Moreover, many topographic covariates (i.e.,
elevation, texture, topographic diversity) also play an important role.

Notably, for the 60–100 cmdepth layer, ecoregions Level 4 (eco L4)was one
of the most important covariates after soil-related covariates.

The predicted SOC density maps
Figure 3 shows the mapping results of SOC density across different soil
depths at the first period (1955–1959) and last period (2010–2014). The
mapping results of other periods are shown in Supplementary Fig. 3. The
0–15 cm layer exhibits the highest SOC density, while the 60–100 cm layer

Fig. 1 | Methodological framework of this study.
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has the lowest. Different soil layers show distinct patterns of spatial and
temporal variation. In the surface layer, the highest SOC densities appear in
northern andwestern forested regions, while the arid and semi-arid areas in
the southwestern United States, with sparse vegetation, exhibit lower SOC
densities. As for deeper depths, besides the southwestern areas, southeastern
forested areas also have low SOCdensity, creating a distinct west-high, east-
low spatial distribution. Changes in spatial distribution patterns of SOC
density are small over every five years, and similar patterns are observed
across each soil layer.

The SOC dynamics in CONUS from 1955 to 2014
The results indicate that the relative change rate (%) of SOC density com-
paring 2010–2014 with 1955–1959 varies notably with soil depth and dis-
plays distinct spatial heterogeneity (Fig. 4, Table 2). In surface (0–15 cm)
and subsurface layers (15–30 cm), SOC shows a “declined-then-rose”

pattern over sixty years with net increases in the central-western, northern
and southeastern regions when comparing the last period (2010–2014) to
the first period (1955–1959). Conversely, large areas in the southwestern
and parts of the central-north and central-east regions exhibit SOC losses
exceeding 10% compared to the first period, predominantly following a
“rose-then-declined” trend over sixty years. The spatial distribution of SOC
changes in deeper layers (30–60 and 60–100 cm) show some differences,
withmore pronounced and extensive increasing trends in the north-central
and southeastern regions, mostly following a “declined-then-rose” or
“fluctuating change” pattern, though losses still occurred in the southern-
most parts of the central regions. These findings highlight the depth-
dependent SOC dynamics across regions. These findings highlight the
notable depth dependency and spatial heterogeneity of SOC dynamics.

The overall SOC stocks above 1m demonstrate a multi-stage change
over 60 years (Fig. 5), with a gradual increase before 1980 followed by
fluctuating changes thereafter. In terms of change between 1955–1959 and
2010–2014, total SOC stocks above 1m rose from68.40 Pg to 70.33 Pg, with
an overall average annual change rate of 32.25 Tg per year (1 Tg = 10^12 g,
Fig. 5). Temporal trends in SOC stocks also varied in different layers. The
surface 0–15 cm SOC stocks declined slightly before 1970 and exhibited a
fluctuating increasing trend thereafter. The deeper three soil layers showed
similar obvious rising trends until 1980, but declined since 1985, and fluc-
tuating increasing afterwards. Notably, the 60–100 cm exhibited the mini-
mal temporal fluctuations after 1980 and the strongest rising trend over six
decades, highlighting its importance as a long-termSOC reservoir potential.
The overall average annual change rate for 0–15 cm, 15–30 cm, 30–60 cm

Fig. 3 | The spatial distribution of soil organic carbon (SOC) density for depths 0–15 cm, 15–30 cm, 30–60 cm and 60–100 cm in 1955–1950 and 2010–2014. Subtitles
indicate the soil depth and time period represented by each panel. Colors range from light yellow to dark green, with darker colors indicating higher SOC density.

Table 1 | Number of covariates and hyper-parameters for each
depth model

Depth Number of covariates ntree mtry

0–15 cm 23 200 4

15–30 cm 47 150 6

30–60 cm 54 200 7

60–100 cm 49 200 7

Fig. 2 | The accuracy and scatterplot ofmeasured soil organic carbon (SOC) density (normalized) and predicted SOC density (normalized) for each depth throughout
thewhole period.The red line represents the 1:1 line. The scatterplot is a density scatterplot, where colors range from light yellow to dark green, with darker colors indicating
higher point density.
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and 60–100 cm are 4.04 Tg, 5.06 Tg, 7.88 Tg and 15.28 Tg per year,
respectively. Deeper soil has a higher rate of increase than surface soil. These
trends suggest that SOC accumulation is not only restricted to surface layers
but also occurs notably in deeper layers, highlighting the importance of
including deeper soil carbon when assessing long-term carbon storage
potential.

We also evaluated changes in SOC stocks for each land use type,
distinguishing between stable (i.e., unchanged over six decades) and
changed land use categories, from the first period (1955–1959) to the
last period (2010–2014) (Table 3, Fig. 6). Land use change is obtained
by comparing the 1955 and 2010 land use maps. The SOC stocks
changes mainly occurred in areas where land use remained

Fig. 4 | Spatial distribution of soil organic carbon (SOC) density in 1955–1959
(first period) and 2010–2014 (last period), relative change rate between
1955–1959 and 2010–2014, and change trend in 0–15 cm, 15–30 cm, 30–60 cm
and 60–100 cm. Subtitles indicate the different meanings of each panel. In the
relative change rate maps, colors range from dark blue to dark red, representing a

shift from SOC decrease to increase. In the change trend maps, different colors
indicate different types of SOC change trends. The relative change rate between
1955–1959 and 2010–2014 at different depths in different periods was shown in
Supplementary Fig. 4.

Table 2 | Percentage of various types of changes at different depths for 60 years

Depth Nearly unchanged Continuously rising Continuously declining Declined then rose Rose then declined Fluctuating change

0–15 cm 35.51% 16.90% 4.08% 14.50% 8.79% 20.22%

15–30 cm 36.69% 15.12% 7.39% 12.03% 8.57% 20.20%

30–60 cm 33.90% 15.98% 6.96% 12.09% 8.49% 22.58%

60–100 cm 25.91% 18.28% 4.24% 18.01% 5.70% 27.86%
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unchanged over time due to their extensive coverage. The largest
SOC increase (1.334 Pg) within the 0–100 cm depth was observed in
stable forest, followed by pasture (0.570 Pg), cropland (0.510 Pg),
unmanaged grass/shrubland (0.068 Pg) and sparse/no vegetation area
(0.060 Pg). Carbon sinks occurred in almost all depths of these stable
land uses, especially in 60–100 cm. In contrast, stable cropland dis-
played SOC losses in the top 0–15 cm layer, possibly due to intensive
agricultural practices.

Further analysis of relative change dynamics reveals complex patterns
that varybyboth landuse typesand soil depth (Fig. 6). In forests, SOCstocks
decreased in the 0–15 cm layer until around the 1990s and then kept
increasing. In the deeper layers, SOC stocks exhibited a fluctuating upward
trend, with greater increases observed at deeper depths, suggesting that
forest ecosystems may be gradually enhancing carbon storage in subsoil
layers over time. Pasture showed minor increases in the 60–100 cm layer,
while the upper three layers displayed continuous fluctuations with no clear

Table 3 | Soil organic carbon (SOC) stocks change between the first period (1955–1959) and the last period (2010–2014) in each
land use transition type

0–15 cm 15–30 cm 30–60 cm 60–100 cm 0–100 cm

Area (104km2) 1955 2010 Δ (Tg) 1955 2010 Δ (Tg) 1955 2010 Δ (Tg) 1955 2010 Δ (Tg) 1955 2010 Δ (Tg)

Stable Fa 235.79 9.92 10.17 242.29 4.89 5.12 238.47 4.39 4.78 392.41 2.95 3.42 461.29 22.15 23.49 1334.46

F→C 1.77 0.07 0.07 0.21 0.03 0.03 1.97 0.03 0.03 2.40 0.02 0.02 3.01 0.15 0.15 7.60

F→P 2.56 0.10 0.11 3.62 0.05 0.06 2.97 0.05 0.06 4.51 0.04 0.04 5.47 0.24 0.26 16.56

F→G 2.85 0.12 0.12 3.14 0.06 0.07 3.74 0.06 0.07 5.66 0.05 0.05 5.89 0.29 0.31 18.43

F→N 0.44 0.02 0.02 0.66 0.01 0.01 0.92 0.01 0.02 2.34 0.01 0.01 2.00 0.06 0.06 5.92

Stable P 178.73 5.29 5.55 259.79 3.32 3.43 101.15 4.40 4.46 55.28 3.39 3.54 153.31 16.41 16.98 569.53

P→C 15.27 0.49 0.51 21.52 0.31 0.32 7.00 0.40 0.40 5.11 0.30 0.32 13.73 1.49 1.54 47.36

P→F 25.05 0.91 0.95 40.94 0.48 0.51 23.54 0.53 0.56 29.75 0.41 0.44 39.66 2.33 2.47 133.90

P→G 6.29 0.20 0.21 7.27 0.12 0.12 3.00 0.15 0.16 1.31 0.12 0.12 5.86 0.60 0.61 17.44

P→N 7.01 0.18 0.19 11.40 0.11 0.12 6.04 0.14 0.15 8.52 0.11 0.12 11.99 0.54 0.58 37.95

Stable C 145.71 5.71 5.65 −63.68 3.61 3.72 105.30 3.83 4.01 172.75 2.76 3.05 296.32 15.92 16.43 510.70

C→P 5.69 0.20 0.21 5.09 0.13 0.13 3.84 0.15 0.16 2.76 0.11 0.12 7.08 0.59 0.61 18.77

C→F 10.94 0.39 0.39 −1.47 0.21 0.21 8.59 0.19 0.20 11.68 0.15 0.17 18.63 0.93 0.96 37.44

C→G 3.28 0.12 0.12 2.54 0.07 0.08 2.43 0.08 0.08 1.73 0.06 0.07 4.83 0.34 0.35 11.52

C→N 0.21 0.01 0.01 0.03 0.00 0.00 0.04 0.00 0.00 −0.01 0.00 0.00 0.23 0.02 0.02 0.28

Stable G 43.89 1.03 1.06 29.76 0.68 0.69 6.39 0.90 0.91 6.79 0.69 0.71 25.42 3.29 3.36 68.36

G→C 0.94 0.02 0.03 1.61 0.02 0.02 0.54 0.02 0.02 0.60 0.02 0.02 0.96 0.07 0.08 3.71

G→P 5.83 0.17 0.17 7.38 0.11 0.11 2.94 0.14 0.14 1.11 0.11 0.12 6.75 0.52 0.54 18.18

G→F 4.26 0.16 0.17 6.40 0.09 0.09 4.10 0.10 0.11 4.02 0.08 0.08 6.02 0.43 0.45 20.53

G→N 3.33 0.04 0.04 1.78 0.03 0.03 0.15 0.05 0.05 −0.80 0.04 0.04 1.69 0.16 0.16 2.83

Stable N 44.9 0.44 0.47 26.12 0.34 0.34 3.67 0.50 0.50 3.94 0.44 0.47 26.15 1.72 1.78 59.89

N→C 0.06 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.08 0.00 0.00 0.03 0.00 0.00 0.12

N→P 0.41 0.01 0.01 0.27 0.00 0.00 0.02 0.01 0.01 0.24 0.01 0.01 0.31 0.02 0.02 0.84

N→F 0.02 0.00 0.00 0.03 0.00 0.00 0.02 0.00 0.00 0.05 0.00 0.00 0.04 0.00 0.00 0.15

N→G 2.81 0.03 0.03 1.16 0.02 0.02 −1.25 0.03 0.03 0.69 0.03 0.03 1.10 0.11 0.11 1.69
aForest (F), pasture/rangeland (P), cropland (C), unmanaged grass/shrubland (G), sparse/no vegetation(N)

Fig. 5 | The temporal trends of soil organic carbon
(SOC) stocks in the Contiguous United States
(CONUS) across different soil depths from 1955
to 2014. Each panel represents a specific depth
interval: 0–15 cm, 15–30 cm, 30–60 cm, and
60–100 cm. The gray area around each trend line
represents the 95% confidence interval of the linear
regression model.
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pattern until the 2000s, then increased slightly. This indicates that pastures
have a limited capacity for SOC accumulation in all layers under historic
management practices, but situations may have changed recently. SOC
stocks in the upper three layers of croplands all went through continuous
losses until the 1980s, followed by a gradual recovery. For the layer of
60–100 cm,we foundno loss before the 1980s and similar increases as in the
upper layers. In contrast, in sparse/no vegetation areas, unmanaged grass-
land and shrubland, SOC stocks increased consistently until the 1980s, after
which their relative change rate started todecline, suggesting that these areas
acted as carbon sinks initially, but carbon accumulation has slowed down in
recent decades. These findings highlight the unique SOC dynamics across
land use types and underscore the importance of land management stra-
tegies tailored for specific land uses and soil depths to optimize SOC storage
across the landscape.

Landuse changes causedminor SOCstocks changes, but some of them
contributed to large changes in SOC stocks (Supplementary Table 1),
revealing meaningful patterns in SOC dynamics for land use management.
Afforestation resulted in greater SOC gains than those caused by converting
forest to other land use types. In particular, the conversion of pasture into
forest led to the largest increase (0.134 Pg). The shift from sparse/no
vegetation area (N) to forest was accompanied by a larger increase than that
happening in stable forests. These highlight the contribution of afforestation
to carbon sequestration over the past 60 years. In addition, the two-way
transformations between pasture and cropland (P→C and C→P), trans-
forming cropland tounmanagedgrass/shrubland (C→G)and transforming
pasture to sparse/no vegetation area (P→N) resulted in SOC gains, mainly
in 60–100 cm, suggesting that such land use changes may enhance carbon
storage in deeper soil layers. Conversion from sparse/no vegetation area to
any land use types (N→others), from cropland or unmanaged grass/
shrubland to sparse/no vegetation (C→N, G→N) and from unmanaged
grass/shrubland to cropland (G→C) showed almost no SOC changes,
indicating that such transitions need to be optimized for greater carbon
benefits.

The uncertainty of SOC stocks predictions
Figure 7 shows the PICP validation for each depth throughout the whole
period, and Fig. 8 shows the RWPIR mapping results of SOC stocks in
2010–2014 for each soil layer as an example. The PICP values closely align
with the 1:1 line at all depths, indicating strong predictive performance of
theQRFmodel regarding uncertainty. However, the PICP validation results
for the periods 1965–1969 and 1970–1974, 2000–2004, as shown in Sup-
plementary Fig. 8, are slightly over the 1:1 line across all depths, suggesting

that the uncertainty estimates for these periods may be overly optimistic.
The spatial distribution of RWPIR reveals that higher uncertainty is con-
centrated in theWestern Sierra, Peninsular Florida andGreat Lakes regions,
likely due to the sparse distribution of soil sample sites and poor spatial
representativeness in these areas (see Fig. 9). Furthermore, there is a ten-
dency for uncertainty to increase with depth, which may be attributed to a
reduced number of soil samples in deeper layers. Notably, the spatial dis-
tribution of RWPIR appears relatively consistent across different periods
(Supplementary Fig. 6).

Discussions
Depth-dependent SOC changes across different periods
Asoneof the fewsources of long-termevidenceonSOCacross large regions,
our study reveals distinctphases of SOCchangeoverdecadesusingST-DSM
models.We identified shifts in SOCstocks changes in the contiguousUnited
States at depthsof 0–100 cmaround1980and1995. Similarly, a 32-yrperiod
of observational study at theWalkerBranchwatershed inTennessee,United
States, reported fluctuations in soil carbon concentrations (%) from 1972 to
2004, with a decline in SOC observed between 1982 and 1993 that was later
reversed in subsequent years44. Our findings suggest that this pattern of
change is not isolated, as similar shifts have occurred across broader regions
in the CONUS, further demonstrating that our dataset can serve as a
foundational resource for soil carbon management across the CONUS.
Additionally, this data provides a robust basis for further investigation into
the drivers of carbon change, which are likely linked to climate change and
anthropogenic impacts45,46. This underscores the significance and potential
of our research in contributing to the development of effective soil man-
agement and climate mitigation strategies.

Furthermore, through whole-profile soil sample analysis, we dis-
covered that these transition phases vary across soil depths. Our results
emphasize the critical importance of examining long-termSOCdynamics at
multiple depths, including the surface (0–15 cm), subsurface (15–30 cm &
30–60 cm), and deep layers (60–100 cm). Notably, unlike the relatively
stableupper layers, SOCstocks in the 60–100 cm layer exhibited a consistent
and notable increase in all land-use types over 60 years, contributing to
~45% of the total SOC gain in the contiguous United States. This finding
suggests that SOC in deeper soil layers exhibits greater dynamics than
conventionally recognized, likely governed by factors extending beyond
mere chemical and physical stabilization mechanisms47,48. The reported
trends of deep SOCdynamics remain contradictory across previous studies.
For example, Wang et al.49 and Zhou et al.50 indicated that long-term cul-
tivation can lead to notable losses of deep SOC, while Mayer et al.51 and Liu
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Fig. 6 | Relative change of soil organic carbon (SOC) stocks (Pg) in each 5-year interval. The relative change was calculated based on comparing to mean SOC stocks of
different land use types in 1955–1959.
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et al.52 observed an increasing trend in deep SOC at global or regional scale,
respectively. Future studies should systematically examine the governing
mechanisms under varying climatic regimes and anthropogenic dis-
turbance intensities.Ourfindings highlight the importance of incorporating
depth-specific analyses into SOC research and modeling frameworks to
better capture long-term carbon dynamics53,54.

SOC stocks change in different land uses
Vertical differentiation was observed in cropland SOC dynamics, while
surface layers (0–15 cm) showed decelerated depletion after 1985, all sub-
surface horizons (15–100 cm) maintained variable but persistent accumu-
lation patterns. Changes in precipitation patterns are likely to have
influenced cropland SOC dynamics55. Increasing precipitation after 1985
may have played a role in supporting biomass growth and organic matter
input, thus possibly promoting SOC accumulation55,56. In addition to cli-
mate factors, human activities have also notably affected SOC trends in
cropland. The observed decline in surface SOC stocks may be attributed to
soil aeration and structural disruption caused by tillage practices, which
accelerate the oxidation and loss of organic matter57,58. After 1985, the
implementation of no-tillage subsidies and associated acidification pro-
cesses may have contributed to SOC stabilization or recovery59,60.

Forest SOC stocks across all depths show an overall increasing
trend, though with noticeable fluctuations. Compared to croplands, the
increase in forest SOC stocks in the CONUS region is likely to be more
strongly influenced by natural factors, such as precipitation and
warming61. Precipitation in CONUS forest exhibited overall fluctuations,
with an increasing trend prior to 1995, followed by a general decline.
Meanwhile, temperature rose notably from 1975 to 2000 and remained
relatively stable in the following years. Under the combined influence of
precipitation and temperature, forest SOC stocks exhibited an overall
increasing trend with some fluctuations. As the role of forest soil carbon
sinks has gained increasing attention in recent years62,63, future man-
agement strategies may need to more carefully account for the potential
impacts of climatic factors64.

Sparse/no vegetation area and unmanaged natural grasslands have the
potential to store SOC through revegetation and organic matter

enhancement9. However, it is worth noting that these two land uses are
themselves small in size, so their capacity as carbon sinks may be debatable.
In 1980, when the SOC stocks of these two land uses were at their highest,
they stored SOC stocks close to 110% of the initial value. But these two land
uses have transitioned to slower accumulation in recent decades, thismay be
a result of sparse vegetation cover leading to a lower upper limit of storable
SOC for this land use type. Increasing vegetation cover and converting to
other land use types with higher vegetation covermay be an effective way to
further develop the carbon sink capacity of sparse/no vegetation and
unmanaged natural grasslands65.

Limitations and perspectives
Obtaining directly revisited temporal sampling can improve the accuracy of
spatio-temporal change measurements15,66, however, this sampling of soil
samples remains challenging. Compared with the revisiting temporal
sampling, ST-DSM provides a practical and dependable method for mod-
eling SOC stocks and their variability. The strong spatial representativeness
of our sample distribution in different periods (~80% of sites having a chi-
square value < 0.975) provides the basis for implementing a reliable ST-
DSM. However, sites in 1995–1999, 2000–2004, and 2005–2009 have a chi-
square value < 0.975 ~60%, whichmay have introduced predictive bias and
higher uncertainty. This limitation is likely unavoidablewhenusing existing
open soil databases and highlights the need for more comprehensive soil
databases in the future. Furthermore, given that many early sampled U.S.
soil profiles did not record the O horizon even in forest, we excluded the O
horizon of all profiles in the modeling to avoid estimation bias. This may
lead to an underestimation of SOC stocks in forest. Future efforts to har-
monize O horizon data records standardization in soil sampling could help
to improve the accuracy of SOC stock assessments, particularly in organic-
rich environments. In addition, incorporating the O horizon into future
modeling efforts would enhance our understanding of total SOC stocks in
forest ecosystems, where a notable portion of organic carbon is often stored
in surface organic layers.

Vegetation-related organism covariates, such as vegetation indices
derived from remote sensing, are critical in ST-DSM, as leaf litter, root litter
and root exudates are essential sources of SOC. Vegetation contributes to

Fig. 8 | RelativeWidth of the Posterior Interquartile Range (RWPIR) of soil organic carbon (SOC) density in 2010–2014 (as an example) for each depth. Colors range
from light blue to dark yellow, with darker colors indicating higher RWPIR and greater uncertainty.

Fig. 7 | The prediction interval coverage probability (PICP) validation for each depth throughout the whole period. The red line represents the 1:1 line.
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elevated SOC stocks due to its high productivity and continuous carbon
supply67,68. In this study, because of the insufficient temporal coverage of
remote sensing data, we did not use remote sensing derived covariates and
used potential natural vegetation and CONUS ecoregions instead (Sup-
plementary Table 2). This choicemay have led to an underestimation of the
vegetation impact on SOC spatio-temporal changes.

Additionally, ST-DSM, being primarily data-driven, often overlooks
the biogeochemical processes underlying SOC changes2,18. Lack of guidance
on the process may introduce uncertainty in prediction results. To address
this limitation, future studies could combine process-basedmodelswith ST-
DSM to gain amore comprehensive understanding of SOC spatio-temporal
changes and mitigate lag effects in SOC responses to environmental vari-
ables. Studies by Xie et al.21 and Zhang et al.22 demonstrate that integrating
process-basedmodels with ST-DSM notably improves the spatio-temporal
modeling of SOC dynamics.

Conclusion
In this study, we produced a spatially explicit SOC dataset for the CONUS
spanning 1955–2014 at 5-year intervals. Using the ST-DSM approach with

59 environmental covariates, we generated predictions at 250m spatial
resolution for four depth intervals: 0–15, 15–30, 30–60, and 60–100 cm,
accompanied by quantified uncertainty estimates. This work addresses a
critical gap in national-scale SOC stocks data, providing both spatial pre-
dictions and temporal trends over several decades. Our data exhibit high
spatio-temporal accuracy with LCCC ranging from 0.51 to 0.63 and R2

ranging from 0.38 to 0.48, underscoring both the reliability of the dataset
and the feasibility of applying ST-DSM on a national scale.

Our findings indicate that over 60 years, overall SOC stocks above
1 m demonstrate a multi-stage change of “rising-fluctuating”. Total SOC
stocks above 1 m rose from 68.40 Pg to 70.33 Pg with an increase rate of
32.25 Tg per year. The 0–15 cm layer declined slightly before 1970 and
increased thereafter; 15–100 cm layers fluctuated with an overall rising
trend; notably, the 60–100 cm layer exhibited a steady upward trend with
minimal fluctuations since 1980s, suggesting a greater SOC accumulation
potential with soil depth below 15 cm. Across different land uses, the
topsoil of croplandmay be a source of carbon, while forests are important
carbon sinks. SOC stocks in surface soil (0–15 cm) in cropland areas
notably decreased and subsurface and deep soil cropland SOC stocks

Fig. 9 | Distribution of observations of soil organic carbon (SOC) density. Spatial
distribution and representativeness of soil samples in different periods at depths of
0–15 cm (a). The median, mean (yellow triangle), and interquartile range of SOC

density for samples along the vertical soil profile, note that numbers of samples from
different depths are shown (i.e., N[1] represents the number of the first layer) (b).
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(15–30 cm, 30–60 cm and 60–100 cm) showed a fluctuating rising trend.
Forest SOC stocks show a fluctuating rising trend overall. Pastureland
and sparse/no vegetation areas and unmanaged natural grasslands once
showed some carbon sequestration capacity before 1980s, but they have
transitioned to slower accumulation. This research enhances our
understanding of the global carbon cycle and supports the development
of climate mitigation strategies.

Materials
Study area. The study area for this research is the CONUS, encom-
passing 48 adjoining states. CONUS is one of the largest and most eco-
logically diverse regions in the world, covering a wide array of climatic
zones fromarid deserts in the Southwest to humid subtropical areas in the
Southeast, as well as temperate climates in theNortheast andMidwest. Its
varied topography includes vast plains, rolling hills, major mountain
ranges such as the Rockies andAppalachians, and extensive river systems
like the Mississippi and Missouri Rivers. This diversity in climate and
topography supports a rich array of ecosystems and land uses, providing
ideal settings to examine SOC dynamics across a range of environmental
gradients.

Soil observation data and quality assessment. We collected the soil
organic carbon sample data in CONUS from two soil profile datasets,
WoSIS snapshot 2019 (ISRIC Data Hub) and International Soil Carbon
Network version 3 Database (ISCN3). The World Soil Information
Service (WoSIS)69 collates the largest quality-assessed and standardized
database of explicit soil profile observations across the globe by ISRIC-
World Soil Information (https://www.isric.org/). The ISCN is an inter-
national scientific community devoted to the advancement of soil carbon
research andmanages an open-access soil carbon database70.We selected
high-quality profiles of CONUS from the snapshot of WoSIS2019 and
ISCN3 according to the following two criteria: 1) high accuracy of geo-
graphical coordinates, 2) explicit sampling year. Specifically, in the
WoSIS database, we selected the sampling points with geographical
coordinates error of less than 1 arc-second (~30 m). In the ISCN data-
base, we selected geographical coordinates with a position error of less
than 0.0001 arc-degree (~11 m).

To ensure the quality of the profile for the following part of digital soil
mapping, we first excluded profiles with fewer than 3 layers to avoid
potential biases in depth standardization caused by insufficient vertical
resolution. Then, we excluded layers of those profile if their deeper depth is
smaller than that of the upper depth, excluded the layers with overlapping
depthswithin oneprofile (e.g. layers 0–30 and 0–15 in the sameprofile), and
averaging the values of soil properties of layers with same upper and deeper
depth. Subsequently, qualitymarkerswere assigned to each sample basedon
a standardized process, according to the number of soil layers in the profile,
whether the top layerwas anOhorizonor anunnamed layer, thepresenceof
organic soil with all O layers, and the effective recorded thickness of the
profile. Finally, based on the quality makers from the original records, we
excluded O horizons (the first soil layer was named O) or potential O
horizons (the first layer was unnamed and with high organic content
exceeding 20%) due to their inconsistent temporal distribution across
records and the fact that most of the profiles didn’t record this layer. In the
WOSIS database, fewer than 1% of sampling sites recorded O horizons or
potential O horizons, while in the ISCN database, the proportions were
below 2% (before 2000) and about 4% after 2000. In addition, we removed
those organic soils (defined as soils with all depths areOhorizons) fromour
dataset due to their scarcity, accounting for less than 0.04% of the total
records.

SOC density estimation. To calculate SOC density using soil data from
WoSIS, we extracted the observed soil organic carbon content (SOCc, g/kg),
bulk density (BD, g/cm3), coarse fragments (CRF %), sand (%), silt (%) and
clay (%) of each soil layer. Due to the inconsistency of layer/depth division
of each profile, we harmonized each soil property into four depth layers:

0–15, 15–30, 30–60 and 60–100 cm. They were taken as the standardized
sample data for the following soil predictions. Specifically, equal-area
quadratic splines are used to fit a continuous depth function of SOC
density, BD, sand, silt and clay based on the properties measured by genetic
horizons following71. As for the CRF, of which variation along a profile
often includes reasonably abrupt changes, we used a numerical integration
based on a rectangle rule (Hengl et al., 2017).

Among these soil profiles, only half have measurements for both BD
andCRF. Following the approach ofWang et al.47 andChen et al.72, we used
amachine learning-based pedo-transfer function to perform imputation for
missing data. Specifically, for BD and CRF in each standard soil depth, we
developed random forest models based on all measurements of the
respective property (e.g., BD) using other observed soil properties, including
SOCc, clay, sand and silt and sample time from the WoSIS database as the
main variables for the pedo-transfer function of BD. For soil profiles that
clay, sand and silt were not reported, we used the SoilGrids with 250m
spatial resolution13 as a substitute at given sampling locations. After scaling
and filling the above properties, the SOC density (t/ha) was calculated
according to the following formulation:

SOC densityðkgCm�2Þ ¼ SOCcðg kg�1Þ � BDðg cm�3Þ � 1� CRFð Þ � dðmÞ
ð1Þ

The ISCN3, released in December 2015, provides soil profiles with depths
containing computed SOC density. There are two ways to calculate SOC
density, i.e., total carbon*bulk density, organic carbon*bulk density. To
keep consistent with the density calculation method using the WoSIS
database in our study,firstly, for the soil layers calculating SOCdensityusing
total carbon (containing organic carbon and inorganic carbon), we cor-
rected them using %CaCO3 data for samples reporting both C_tot and
CaCO3. Specifically,wequantify soil inorganic carbon (SIC) as 12%of the%
CaCO3 following the convention73. Secondly, we recalculated all the SOC
density by multiplying the coarse fragments (CRF %). Due to the lack of
reported CRF and incomplete soil texture information (sand, silt and clay)
as well, we extracted CRF from the SoilGrids dataset. Finally, we also har-
monized the SOC density to four depths by summing the SOC density of
depths within the depth interval, when the end point of one layer is larger
than the bottom value of standard depth (e.g. 15, 30, 60, 100), we got the
density proportionally assuming that the density are evenly distributed
in depth.

The histograms of the two databases before the 2000s show strong
alignment (Supplementary Fig. 7), with some profiles (about 73% of all
profiles used from ISCN) sharing the same locations. This consistency
suggests that combining the twodatabases hasminimal impacton analyzing
SOC dynamics. To further refine our data, we excluded sampling points
from ISCN that shared coordinates with WoSIS, retaining unique profiles
from ISCN as a complement. Ultimately, we compiled SOC density data
across four depth intervals: 0–15 cm, 15–30 cm, 30–60 cm, and 60–100 cm,
with sample sizes of 24,500, 24,801, 24,444, and 22,059, respectively. Given
the left-skewed distribution of SOC density and the common tendency of
DSM models to underestimate high values, we applied a log-normal
transformation (log(x+ 1)) during model training and subsequently back-
transformed the predictions to the original scale for interpretation.

Representativeness estimation of soil samples. To examine the
representativeness of the collected soil samples, referenced to Patoine
et al.74, we calculated the environmental representativeness of the col-
lected sample data for each five years using seven basic environmental
variables: cation exchange capacity, clay, CONUS ecoregions Level IV,
elevation, annual mean maximum/minimum temperature and total
precipitation in each five years and parent material. Analysis of sample
site representativeness showed good environmental coverage for all
periods except 1995–1999, 2000–2004, and 2005–2009, with ~85% of
sites having a chi-square value < 0.975 (Fig. 9a). The spatial distribution
and representativeness of soil samples across periods for depths of
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15–30 cm, 30–60 cm and 60–100 cm are illustrated in Supplementary
Fig. 8. The histogram of SOC density in different land use types for four
depths in different periods is shown in Supplementary Fig. 9.

Environmental covariates. We used 59 covariates as predictors that
were representative of the environmental factors: s (soil), c (climate), o
(organisms), r (relief), p (parentmaterial), a (age), n (spatial location) and
human24. Supplementary Table 1 provides the sources, original resolu-
tion and detailed descriptions of the environmental covariates. The
covariates considered can be grouped as follows.

Soil covariates include soil type derived respectively from Gridded
National Soil Survey Geographic Database (gNATSGO) and Harmonized
World Soil Database (HWSD), cation exchange capacity (CEC), clay,
nitrogen, phh2o from the SoilGrids. Climatic covariates include annual and
seasonal averaged maximum temperature, minimum temperature, average
temperature and precipitation. The 4 seasons are defined as March toMay,
June to August, September to November, and December to February,
respectively.Monthly grids ofmeanmaximum/minimum temperature and
total precipitation at a 60 arc-second resolution (~2 km) from 1901 to 2016
were downloaded from theWorldDataCenter forClimate (WDCC)75. This
datasetwas generatedusingANUSPLINby producing thin plate smoothing
splinemodels.Organismcovariates include theCONUSecoregions (Level I,
II, III and IV)76 and potential natural vegetation (modified Kuchler) from
the US Environmental Protection Agency (EPA). Relief covariates include
elevation and factors calculated based on elevation layers by SAGA (i.e.,
aspect, slope, Topographic Wetness Index, Convergence Index, etc.), The
originalDigital ElevationModel (DEM)data at 90mspatial resolution from
the Shuttle Radar TopographyMission (SRTM), and the Continuous Heat-
InsolationLoad Index (CHILI), PhysiographicDiversity (PD),Topographic
Diversity (TD) from the USGS 3DEP 10mNational Map Seamless dataset
at a resolution of 1/3 arc-second (~10m) are downloaded through the
Google Earth Engine (GEE)platform.CONUS lithologicalmaps are used to
represent parent material.

Land use from HILDA+ global land use change77 and Major Land
Resource Area (MLRA) from the US Department of Agriculture (USDA)
are used to represent human activities. The HILDA+ reconstruction was
derived from multiple openly available global, contiguous, regional, and
national land use and land cover change (LUC) datasets, including remote
sensing data, reconstructions, and statistics. This dataset provides a long-
term global annual land use record from 1899 to 2019 at a 1 km spatial
resolution, covering six categories: urban areas, cropland, pasture/range-
land, forest, unmanaged grass/shrubland, and sparse/no vegetation areas.
Sampling time and latitude/longitude coordinates of soil samples are usedas
the age and spatial location factors.

Typically, remote sensing andvegetationdataderivedhavebeenwidely
used as key environmental covariates inDSMstudies78,79.However,whilewe
aim to model SOC dynamics from 1955 to 2014 in this study, available
remote sensing data only dates back to the 1980s at the earliest. To ensure
consistency in the covariates used for ST-DSM modeling over the entire
period, we chose not to include remote sensing covariates. All covariates
were resampled to match the target spatial resolution of 250m using the
cubist resampling method, then cropped to the study area’s extent and
projected to a common coordinate reference system (WGS-1984).

Methods
Space and time DSM (ST-DSM)
In space-time DSMmodeling, both static and dynamic covariates are used
together to build the SOC-environment relationships over time. Dynamic
covariates typically include climate, vegetation, and land cover, while static
covariates often include topography and intrinsic soil properties21,80,81. In
this study, climate, land use, and sampling time are used as dynamic cov-
ariates, while soil type, topography, biotic factors, and parent material are
treated as static covariates (Supplementary Table 1). For modeling, we
pooled sample points from all years to train a unified model for each soil
depth. Then the dynamic covariates for each periodwere taken as input into

themodel to generate SOCdensity predictions correspondingly. During the
prediction phase, pixels located in urban areas and water bodies were
excluded.After predicting the spatial distribution of SOCdensity (Mgha−1),
SOC stocks (Pg or Tg) are obtained by multiplying SOC density by area82.

The Random Forest (RF) model was employed for modeling and
prediction due to its robustness, high tolerance to outliers and noise, and
reduced susceptibility to overfitting83. RF has been extensively applied in
previous DSM studies and in many cases demonstrated superior predictive
accuracy compared to other models84,85. In ST-DSM, RF is also one of the
most frequently used models18,29. The model tuning process involved two
main steps: covariate selection using recursive feature elimination (RFE)
and hyperparameter optimization.

Selecting an optimal set of environmental covariates is essential in
DSM to reduce redundancy, streamline the model, improve computational
efficiency, and minimize overfitting risk86,87. We used RFE to identify the
best combination of covariates. RFE has proven effective and robust in
optimizing covariate selection within the RF model88,89. This algorithm
initially fits the model with all covariates, assesses model performance, and
ranks covariate importance. It then iteratively removes the least important
covariates, refits and reevaluates the model until all covariates have been
tested. Finally, it outputs the covariate combination with the highest cross-
validation accuracy13. During RFE, model hyperparameters remained at
default values (500 trees for ntree and the square root of the covariate count
for mtry). R-squared was chosen as the loss function, and RFE was imple-
mented using the “caret” package in R.

Following RFE-based covariate selection, the next stepwas to optimize
the hyperparameters of the RF model: the number of trees in the forest
(ntree) and thenumber of predictors randomly selected for each tree (mtry).
Previous studies have indicated that excessively complex hyperparameters
do not notably improve model accuracy and can substantially increase
computational demands13. To prevent overfitting and maintain computa-
tional efficiency, we tested ntree values of 100, 150, and 200, andmtry values
of 1, 1.5, 2, and 3 times the square root of the covariates count. Each ntree
and mtry combination was evaluated using 10-fold nearest-neighbor dis-
tance matching (NNDM) leave-one-out (LOO) cross-validation method90,
with the configurationyielding thehighestR-squaredacross folds selected as
optimal.

The 10-fold NNDM LOO cross-validation method was applied to
evaluate the prediction accuracy90. In each iteration, nine folds were used as
the training dataset and one as the validation dataset. The average of the
cross-validation results was taken as the final accuracymetric. Tominimize
bias in the splitting of training and validation sets, soil samples were stra-
tified by sampling year. The median (0.50 quantile) of the Quantile
RegressionForest (QRF)wasused as theprimarymetric formodel accuracy.
Four commonly used accuracy verification indices, the Lin’s concordance
correlation coefficient (LCCC)91,92, model efficiency coefficient (R2), root
mean square error (RMSE) andmean absolute error (MAE) to calibrate the
mapping results. The formulas of LCCC, R2 andRMSE are demonstrated as
follows:

LCCC ¼ 2rσyσ ŷ

σ2y þ σ2ŷ þ ð�y � �̂yÞ2 ð2Þ

R2 ¼ 1�
Pn

i¼1ðyi � ŷiÞ2Pn
i¼1ðyi � �yÞ2 ð3

RMSE ¼ 1ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyi � ŷiÞ2
s

ð4Þ

MAE ¼ 1
n

Xn
i¼1

jyi � ŷij ð5Þ
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where n is the sample size of validation points, yi and ŷi are observed and
predicted SOM value at the corresponding validation points, r is the cor-
relation coefficient between yi and ŷi, �y and

�̂y, σy and σ ŷ are the average and
variance of yi (observed SOM) and ŷi (predicted SOM).

We used the QRF to estimate the prediction uncertainty93. Unlike the
RF which keeps only the average of the observations that fall into that node
and ignores all other information, the QRF keeps the value of all the
observations in this node. This approach calculates the quantiles of the
conditional probability distribution for each prediction location78,94. The
QRF model was constructed using the ranger package in R with the
“quantreg” parameter set to 0.05, 0.95. This way it will output the 0.05
quantile and the 0.95 quantile, representing the lower and upper limits of a
90% prediction interval (PI90), as described in the GlobalSoilMap
specifications13,95. The relative width of the posterior inter quantile range
(RWPIR) is obtained by dividing PI90 by the median (0.50 quantile) to
display the spatial distribution of uncertainty78,96. The percentage of cross-
validated observations included in the PI90 (prediction interval coverage
probability, PICP) is calculated to assess the reliability of uncertainty esti-
mates. The basic idea of PICP is evaluating the soil samples from the test set
lies in the τ•100 percent PIs97:

PICPðτÞ ¼ 1
n

Xn
i

δðli ≤ yi ≤ uiÞ�100 ð6Þ

where δ is an indicator function, with a Boolean argument:

δ tð Þ ¼ 1; if t is TRUE

0; else

�
ð7Þ

where li and ui are the lower and upper bounding quantiles that together
define a τ•100percent PI.Multiple PICPs are usually calculated for different
PI levels (τ values), and PICP measures the reliability of the entire uncer-
tainty prediction distribution. In cartography, PI levels were plotted on the
x-axis and PICP on the y-axis to obtain reliability scatter plots, which were
plotted against a 1:1 line to visually assess the reliability of the uncertainty
predictions. Values being closer to the 1:1 line means that uncertainty
predictions are more reliable, and being below and above the 1:1 line
indicate over-pessimistic or over-optimistic PIs.

Analysis of the spatio-temporal dynamics of SOC
Based on mapping results, we performed the analysis of spatio-temporal
dynamics of SOC. The relative change rate of SOC between 1955–1959 and
2010–2014 was calculated by subtracting the start period result (i.e.,
1955–1959) from final period result (i.e., 2010–2014) and dividing it by the
start period result. Referring to Ray et al.98, based on the results of SOC
densitymapping for each period, we categorized the changing trend of SOC
density into six types: continuously rising, declined then rose, continuously
declining, rose then declined, fluctuating change and nearly unchanged.
Specifically, we fitted intercept-only, linear, quadratic, and cubic models on
each image element of the mapping results in each period, and used the
Akaike Information Criterion to decide which model fitted the observed
data thebest. If the intercept-onlymodel is best, it indicates that SOCdensity
is nearly unchanged; if the linear model is best, the positive slope indicates
that SOC stocks is continuously rising, negative slope indicates that SOC
density is continuously declining; if the quadratic model is best, the sign of
the positive quadratic term indicated that SOC density declined then rose,
the negative indicated that SOC density rose then declined; if cubicmodel is
best, it indicated that SOC density is fluctuating.

Data availability
The predicted SOC density maps can be readily downloaded at https://
zenodo.org/records/15454655.

Code availability
No custom scripts or code were developed; all data processing procedures
are fully documented in the Materials and Methods section.
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