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A B S T R A C T

Obtaining accurate spatial information on soil organic matter (SOM) is crucial for understanding global carbon 
cycle. Digital soil mapping (DSM) has become an effective method for mapping SOM, in which selection of 
influential environmental covariates plays an important role. Soil moisture (SM) can serve as a potential co
variate, especially it can be estimated at large spatial scales thanks to remote sensing. The normalized shortwave- 
infrared difference bare soil moisture indices (NSDSIs) based on Landsat SWIR bands generated at bare soil 
period has been employed in SOM mapping previously. However, soil is usually covered by vegetation, it is thus 
necessary to develop new SM indices applicable to areas covered with vegetation, and examine how SM indices 
perform in areas with different vegetation densities. In this paper, we developed a new SM index by introducing 
NSDSIs to the Optical TRApezoid Model (OPTRAM-NSDSI), and compared it with the original OPTRAM with the 
shortwave infrared transformed reflectance (OPTRAM-STR), as well as NSDSIs. SM indices were generated across 
two study areas, i.e. Zhuxi, Fujian (104 samples and 43.93 km2 with forestland and farmland as main land uses) 
and Heshan, Heilongjiang (106 samples and 60 km2 with primarily farmland) in China. The Integrated Nested 
Laplace Approximation with the Stochastic Partial Differential Equation approach was utilized as the SOM 
prediction model. The results suggest that adding SM variables into the commonly-used environmental cova
riates improves the prediction accuracies. The highest accuracy improvement of 26.8% in terms of Lin’s 
concordance correlation coefficient in Zhuxi is obtained by NSDSIs, and the highest improvement of 56.7% in 
Heshan is obtained by OPTRAM-NSDSI. This may indicate that OPTRAM-NSDSI is more effective in areas with 
higher vegetation densities while NSDSIs in areas with lower densities. Furthermore, the optimal image dates for 
SM estimation are probably at the vegetation “green-up” stage. This study provides a reference for using SM 
information to improve SOM mapping in areas covered with vegetation.

1. Introduction

Soil organic matter (SOM) provides nutrients for plant growth (Yan 
et al., 2023), contributes to the maintenance of soil security (Wang et al., 
2022), and is of significant importance in the global carbon and water 
cycle. Accurately mapping the spatial distribution of SOM is crucial for 
soil carbon accounting and land resource management (Lal, 2004; Lal, 
2020; Sanderman and Baldock, 2010). With the development of 

geographic information systems, land surface data acquisition technol
ogy, and machine learning models, digital soil mapping (DSM) has 
recently become an efficient and cost-effective method for predicting the 
spatial distribution of SOM (Arrouays et al., 2021; Huang et al., 2022; 
McBratney et al., 2003; Minasny and McBratney, 2016). When 
employing DSM, the relationships between the target soil properties and 
its environmental covariates established based on soil sample points are 
utilized to predict the spatial distribution of the soil properties 
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(McBratney et al., 2003). Due to the high spatial heterogeneity of soil, 
generating accurate and reasonable soil maps is a difficult task, there
fore, ongoing research has been directed toward improving the DSM 
performance. One direction is to develop effective environmental 
covariates capable of indicating the spatial variability of the target soil 
property because environmental covariates determine the quality of the 
established soil-environment relationships and then map results and 
accuracies to a large extent (McBratney et al., 2003).

Soil moisture (SM) is a crucial variable in the water cycle and energy 
exchange between the Earth’s surface and atmosphere (Li et al., 2021; 
Robinson et al., 2008), regulates essential hydrological processes such as 
evaporation, infiltration, and runoff (Babaeian et al., 2018), thereby 
influencing crucial physiological processes in soils (Ambrosone et al., 
2020). Several experiments have shown that SM has a significant impact 
on SOM by influencing its dissolution, mineralization, synthesis, mate
rial migration, and physical protection (Krull et al., 2003; Yoshida et al., 
2018). SM variables that are related to SOM could serve as predictors for 
mapping SOM. Yet, the traditional way to obtain SM conditions of an 
area by sampling is usually costly, especially for a large area, and thus 
not suitable for application in DSM (Yang et al., 2023a).

Compared with labor-intensive, range-limited and time-consuming 
ground-based point measurements, remote sensing is effective for 
characterizing and monitoring SM information at a large spatial scale 
(Chen et al., 2020; Li et al., 2021). However, the utilization of remote 
sensing-based SM covariates in DSM remains very limited. Various 
sensors, such as passive microwave, thermal, and optical remote sensing 
sensors, have been utilized to capture SM information on a large scale (Li 
et al., 2021; Susha Lekshmi et al., 2014). Passive microwave remote 
sensing provides accurate observations of SM, but its spatial resolution, 
usually 25 km (Li et al., 2021), is generally coarse for soil mapping. 
Thermal remote sensing relies on the sensitivity of soil to apparent 
thermal inertia to obtain information about the surface water status (Li 
et al., 2021; Sadeghi et al., 2015; Sandholt et al., 2002), but the 
generated SM information is heavily influenced by atmospheric factors, 
such as near-surface air temperature (Sandholt et al., 2002). Optical 
remote sensing has also been used to estimate SM information, as 
demonstrated by Sadeghi et al. (2017) and Yue et al. (2019). Sadeghi 
et al. (2015) introduced the concept of shortwave infrared transformed 
reflectance (STR) and reported a linear relationship between STR and 
SM. Yue et al. (2019) introduced the normalized shortwave-infrared 
difference bare soil moisture indices (NSDSIs), which makes use of the 
short wavelength infrared (SWIR) band with a spatial resolution of 10 m. 
The optical remote sensing approach provides a means of acquiring SM 
information with relatively high spatial resolution, such as using 
Landsat-8 (30 m) or Sentinel-2 images (10 m). Due to those advantages 
of the optical remote sensing generated SM indices, Yang et al. (2023a)
utilized NSDSI indices for SOM mapping and proved their effectiveness 
in improving SOM mapping accuracies compared with commonly-used 
climate and topography variables. However, their study only validated 
the indices in one study area during winter (mid-February), which 
represented a bare soil condition (Yang et al., 2023a). It is unknown how 
the NSDSI indices perform under different levels of vegetation coverage 
since the soil is often covered by vegetation.

In the case of soil covered by vegetation, researchers have developed 
trapezoidal (triangular) models to estimate SM with vegetation cover 
(Babaeian et al., 2018; Ma et al., 2022; Sadeghi et al., 2017). Thermal 
Inertia derived from land surface temperature (LST) is highly correlated 
with SM (Zhang and Zhou, 2016). By investigating the correlation be
tween LST and vegetation indices (VI), researchers found that scatter
plots of LST and VI typically form triangular shapes (Carlson et al., 1994; 
Price, 1990). When the scatterplot represents the full range of fractional 
vegetation cover and SM contents, it tends to be trapezoidal (Moran 
et al., 1994a; Sandholt et al., 2002). Based on this observation, the 
Thermal Optical Trapezoid Model (TOTRAM) has been developed to 
estimate SM based on the distance of each pixel to the bottom (wet edge) 
and top (dry edge) of the pixel distribution within the LST-VI space 

(Sadeghi et al., 2017; Sandholt et al., 2002). However, TOTRAM re
quires images obtained from optical and thermal remote sensing bands. 
Additionally, individual parameterization and calibration are required 
for each remote sensing image at observation dates, which may limit its 
practical application (Ma et al., 2022; Sadeghi et al., 2017). To address 
these limitations, Sadeghi et al. (2017) proposed the OPtical TRApezoid 
Model (OPTRAM) for SM estimation using STR instead of LST (Longo- 
Minnolo et al., 2022; Sadeghi et al., 2017). OPTRAM is suitable for 
images with only optical bands, such as Sentinel-2. Previous studies 
have applied OPTRAM to estimate SM in areas with varying vegetation 
densities (Ma et al., 2022), mixed vegetation types including forests and 
grasslands (Chen et al., 2020), and as an effective indicator for agri
cultural drought (Ambrosone et al., 2020; Hassanpour et al., 2020). It 
suggests that OPTRAM may have broader seasonal applicability and is 
effective in estimating SM information in the presence of vegetation 
coverage on soil.

In the original OPTRAM, a single spectral reflectance index, i.e. STR, 
is adopted to construct relationships for SM estimation. However, one 
single soil spectral reflectance method can be affected by various factors, 
such as particle size distribution, mineral composition, sun angle, 
viewing angle, terrain, and instrumental errors (Galvão and Vitorello, 
1998; Jacquemoud, 1993; Yue et al., 2019). Differently, the NSDSIs 
represent the normalized transformation of two spectral reflectances, 
which can mitigate the influence of various factors on single soil 
reflectance (Yue et al., 2019). It has also demonstrated that the corre
lations between NSDSIs and SM were higher than those of STR. There
fore, using NSDSIs instead of STR within the trapezoid model, called 
OPTRAM-NSDSI, may provide a more reliable approach for SM esti
mation in areas with vegetation covering.

In this study, we developed a new model, OPTRAM-NSDSI, for re
gions with vegetation coverage, and compared it with the original 
OPTRAM with STR and the NSDSI indices for SOM mapping. The ex
periments were conducted in two study areas, Zhuxi in Fujian Province 
and Heshan in Heilongjiang Province, China, characterized by varying 
vegetation densities in different climate zones and land use. The ob
jectives of this study are: (1) to examine whether adding the SM indices 
acquired from the proposed OPTRAM-NSDSI into the commonly-used 
environmental covariates could improve the SOM mapping accuracy; 
(2) to compare the improvement in SOM mapping accuracy using 
OPTRAM-NSDSI estimated SM versus the original OPTRAM estimated 
SM (hereafter called OPTRAM-STR), and NSDSIs; (3) to determine the 
optimal image dates for the three types of SM variables in the two case 
study areas with different vegetation densities. This study aims to 
establish a framework for the generation of SM variables to improve 
SOM mapping, especially in areas with vegetation coverage.

2. Study area and data

2.1. Study areas and soil sampling

The two study areas are the Zhuxi watershed (located in Changting 
County of Fujian Province, hereafter referred to as Zhuxi) and Heshan 
farm (located in Nenjiang County of Heilongjiang Province, hereafter 
referred to as Heshan). Zhuxi has a subtropical monsoon climate and 
diverse land use with forestland and farmland as the main types. 
Conversely, Heshan is predominantly characterized by a cold temperate 
monsoon climate and generally homogeneous farmland. Although the 
farmland in Heshan would be bare in winter, the vegetation density of 
Heshan during the lush vegetation period (with the highest average 
fractional vegetation cover (FVC) value of 0.76 on Sept. 16th) is higher 
than that of Zhuxi (with the highest average FVC value of 0.56 on Aug. 
25th). The specific details of the two study areas are as follows.

2.1.1. The Zhuxi watershed study area
The Zhuxi watershed, with an area of 43.93 km2, is located at 

25◦38′15″-25◦42′55″ N and 116◦23′30″-116◦30′30″ W. The main river 
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Fig. 1. The DEM, land use, and FVC from Landsat-5 images (on Sept. 16th of Zhuxi and Aug. 25th of Heshan, respectively, the growth peak stage), and soil samples of 
Zhuxi (a) and Heshan (c). FVC: fractional vegetation cover. (b) and (c), (e) and (f) demonstrate the photographs of field investigations of Zhuxi (b, c) and Heshan 
(e, f).
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within the watershed, Zhuxi, extends over 13.93 km. The region exhibits 
a subtropical monsoon humid climate, featuring warm and humid 
springs and summers, as well as cold and dry winters and autumns. It 
experiences a prolonged summer season and a brief winter season. The 
mean annual temperature is 18.4 ℃, and annual precipitation varies 
from 1400 to 2450 mm, with the majority occurring between March and 
July. The topography of the watershed is characterized by hills in the 
northeast and more gentle areas in the west. The elevation varies be
tween 268 and 687 m, with an average slope of 11.8◦. Zhuxi exhibits a 
variety of land use types, with forestland representing the largest pro
portion at 63.8% of the area, followed by farmland at 22.9%, urbanland 
and unusedland at 6.8%, and gardenland at 6.5% (Fig. 1a). This area 
exhibited serious soil erosion due to logging and steep slopes before the 
1990s. Soil and water conservation and vegetation restoration projects 
have been conducted since 1995, turning the zonal evergreen broad- 
leaved forest into secondary and plantation forests, with Pinus mas
soniana as the primary species in forestland (Chen et al., 2019). The 
main local crop on the farmland is rice. Among all the dates, the highest 
average value of FVC of the whole study area on Sept. 16th is 0.56, and 
the range of NDVI at this date is − 0.44 to 0.70 with an average of 0.31. 
Skeletal red soil and Percogenic paddy soil in Chinese Soil Taxonomy 
system are the dominant soil types in this watershed, with Skeletal red 
soil encompassing 61.4% of the total area.

2.1.2. The Heshan farm study area
Heshan Farm covers an area of approximately 60 km2, which is 

located at 48◦53′9″-48◦59′20″ N and 125◦8′22″-125◦16′21″ W. The local 
climate is characterized by a cold temperate monsoon climate, with an 
average annual temperature ranging from − 1.4 to 0.8 ℃ and an average 
annual precipitation ranging from 500 to 600 mm. This study, with el
evations ranging from 276 to 363 m and an average slope gradient of less 
than 4◦, has a very gentle terrain (hilly area) with long slopes and a very 
wide flat valley in the east. The parent materials are mainly silt loam 
loess over the whole area except in the valley bottom, which is mainly 
occupied by fluvial deposits. Different from the Zhuxi watershed with 
diverse land uses, the main land use of the Heshan study area is farm
land, accounting for 76.8% of the total study area, with soya bean and 
maize as main crops, followed by marshland (14.5% of the total area) 
(Fig. 1b). Among all the dates, the highest average value of FVC of the 
whole study area on Aug. 25th is 0.76, and the range of NDVI at this date 
is − 0.37 to 0.74 with an average value of 0.57. In the Chinese soil tax
onomy system, the main soil types in this study area include Cambosols, 
Isohumosols, and Gleyosols (Zhang et al., 2021).

2.2. Soil sample data

A soil census sampling was carried out in 2002 in the Zhuxi water
shed, and 106 soil samples in 0 ~ 20 cm depths were collected with a 
sampling strategy based on the Soil and Terrain Digital Database 
(SOTER) model (Oldeman and van Engelen, 1993). Finally, 49.0% of the 
samples were located in forestland, 28.3% in gardenland, 19.8% in 
farmland. SOM (g kg− 1) of the samples was measured using the potas
sium dichromate-concentrated sulphuric acid oxidation method.

At Heshan, 104 soil samples were collected from 2004 to 2005 at A 
horizon with three sampling strategies: systematic sampling, integrative 
hierarchical stepwise sampling and transect sampling (Yang et al., 2013; 
Zeng et al., 2016; Zhu et al., 2010), and SOM (g kg− 1) was measured 
using the dichromate oxidation method (external heat applied). 86.5% 
of the samples were located in farmland, while the remaining 5.8% and 
7.7% samples were obtained from forestland and marshland, 
respectively.

The original left-skewed SOM data were converted to a normal dis
tribution through logarithmic transformation for model building and 
transformed back to their original values for accuracy assessment.

2.3. Environmental covariates for SOM mapping

Commonly-used environmental covariates are those currently prev
alent in the DSM, including climate, topography, parent material and 
land use. According to previous studies (Yang et al., 2023a), the soil- 
forming factors in Zhuxi study area are complex, thus topography, soil 
parent material, climate and land use were chosen as the commonly- 
used environmental covariates. The following environmental cova
riates were generated, namely elevation (ELEV), slope (SLP), topo
graphic wetness index (TWI), soil type (SType) (representing soil parent 
material), annual mean temperature of the 2000–2010 year (TEM), 
annual mean precipitation of the 2000–2010 year (PRE), land use (LU). 
Topographic covariates, such as elevation, slope, and TWI, were ob
tained from the Digital Elevation Model (DEM). The DEM was created by 
vectorizing the contour map derived from the 1:10,000 topographic map 
to construct the Triangulated Irregular Network and subsequently 
generate the DEM for the watershed. The terrain analysis toolbox in 
ArcGIS was employed for the generation of the three topographic vari
ables. The soil type data was obtained from the 1:50,000 Soil Map of 
Changting County. The soil type data can represent soil parent materials 
as well. Climate covariates were acquired from the Resource and Envi
ronment Science and Data Center (RESDC, https://www.resdc.cn/). The 
data from RESDC were produced by ANUSPLIN using interpolation of 
daily meteorological data from more than 2400 stations nationwide 
(Hutchinson, 1998). The original 1 km data of the two climate variables 
were resampled to a spatial resolution of 30 m, consistent with DEM, 
using the Cubic resampling method in ArcGIS. The land use is produced 
through image interpretation based on SPOT5 satellite images taken 
during the same period as soil sampling, and ground truthing and patch- 
by-patch verification verified its accuracy (Chen, 2011).

In Heshan, the macroclimate, soil parent lithology, and vegetation 
conditions are generally uniform, with topography exerting a dominant 
influence on soil formation (Zeng et al., 2016; Zhang and Zhu, 2019; 
Zhang et al., 2021). Consequently, we employed five topographic vari
ables, ELEV, SLP, TWI, plan curvature (plan), profile curvature (prof), 
and land use (LU). We employed a 1:10,000 topographic map issued by 
the Chinese Bureau of Surveying and Mapping (1987) to produce a 
digital elevation model with a 10 m resolution. The DEM was generated 
using the TOPOGRID and TINLATTICE functions in Arc/Info, as 
described by Zhang et al. (2021). The topographic environmental 
covariates were derived from this DEM using the terrain analysis toolbox 
in ArcGIS. The land use of Heshan in 2005 was obtained from the Chi
nese land use remote sensing monitoring data set of RESDC 
(https://www.resdc.cn/DOI/doi.aspx?DOIid = 54) with an original 
resolution of 30 m.

In addition to the above-mentioned environmental covariates, we 
also adopted NDVI in SOM mapping. NDVIs generated from remote 
sensing images have been increasingly used in soil mapping and 
considered as an effective predictor for mapping SOM (Wang et al., 
2023a; Wu et al., 2021). Thus, we also evaluate the effectiveness of the 
proposed SM variables by comparing them with NDVIs. The NDVIs were 
generated from Landsat-5 images at the date with the strongest corre
lation with the measured SOM selected for each of the two areas.

2.4. Remote sensing data for calculating SM indices

The Landsat-5 satellite images in the year of soil sampling were 
utilized to extract NSDSIs and estimate SM with OPTRAM-NSDSI and 
OPTRAM-STR. The images were acquired from the USGS Earth Explorer 
platform (https://earthexplorer.usgs.gov/). For Zhuxi, all Landsat im
agery from the entire year of 2002 was acquired, whereas imagery from 
the end of March to the end of October was obtained for Heshan. Heshan 
was covered with snow from November to early March, making optical 
remote sensing unable to extract SM information during this period. For 
those images affected by cloud contamination, a replacement image 
from the same date or a nearby date in the neighboring year was utilized 
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to ensure a comprehensive time series for the entire growing seasons 
(Zhang and Zhou, 2016). Table. 1 displays the dates of the images uti
lized for the two study areas.

3. Methodology

3.1. The overall framework of the method

The methodology employed in our study is depicted in the flow chart 
Fig. 2. We utilized five types of environmental covariates: commonly- 
used environmental covariates (C), NDVI, normalized shortwave- 
infrared difference bare soil moisture indices (NSDSIs), normalized 
shortwave-infrared difference bare soil moisture indices with Optical 
TRApezoid Model estimated SM (OPTRAM-NSDSI) and shortwave 
infrared transformed reflectance with Optical TRApezoid Model esti
mated SM (OPTRAM-STR). The covariates were combined into four 
combinations to assess their ability in SOM prediction: “C”, “C + NDVI”, 
“C + NSDSIs”, “C + OPTRAM-NSDSI” and “C + OPTRAM-STR”. The 
mapping accuracies obtained from different covariate combinations 
were compared for each date to determine the most effective image date.

3.2. Normalized shortwave-infrared difference bare soil moisture indices 
(NSDSIs)

The NSDSI indices for estimating SM, proposed by Yue et al. (2019), 
is a normalized transformation of two spectral reflectances based on the 
difference in water absorption in the short wavelength infrared (SWIR) 
band. As the SM increases, the reflectance of the soil decreases (Twomey 
et al., 1986; Yue et al., 2019), leading to a darker appearance of the wet 
soil (Sadeghi et al., 2015). The reflectance in the SWIR band exhibits a 
strong sensitivity to variations in SM, (Sadeghi et al., 2015; Tian et al., 
2021). Due to water absorption, there are significant differences in soil 
reflectance across various SWIR bands, such as SWIR1 (1.55 ~ 1.75 mm) 
and SWIR2 (2.08 ~ 2.35 mm). Since the observed difference exhibits a 
linear correlation with the SM, Yue et al. (2019) introduced the NSDSIs 
as a means to effectively represent SM information. The calculation 
formula for NSDSIs is presented in Table. 2. In this study, the SM indices 
based on NSDSIs include the NSDSI1, NSDSI2 and NSDSI3 (Table. 2).

3.3. Original Optical TRApezoid model (OPTRAM-STR) for SM 
estimation

The trapezoidal (triangular) model is commonly used to estimate SM 
with vegetation cover (Babaeian et al., 2018; Ma et al., 2022; Sadeghi 
et al., 2017). The Optical TRApezoid Model (OPTRAM) was initially 
proposed by Sadeghi et al. (2017) and depicts a physically based trap
ezoidal space representing the pixel distribution within the STR-NDVI 
space (Chen et al., 2020). OPTRAM assumes that SM status affects 
vegetation growth and that changes in SM content lead to changes in the 
spectral characteristics of vegetation, such that STR and VI are linearly 
related and STR-VI feature space forms a trapezoid shape (Ambrosone 
et al., 2020; Chen et al., 2014). When the study area encompasses a wide 
range of SM and fractional vegetation cover, the aggregation of all pixels 
will form a geometric shape, such as a triangle or trapezoid, each with 
distinct physical implications (Carlson et al., 1995; Moran et al., 1994b; 
Wang et al., 2023b). Considering a linear relationship between soil 
saturation degree, W (0 for completely dry and 1 for saturated soil) and 
STR can be expressed as (Sadeghi et al., 2017; Sadeghi et al., 2015): 

STR =
(1 − BSWIR)

2

2BSWIR
(1) 

W(OPTRAM − STR) =
θ − θd

θw − θd
=

STR − STRd

STRw − STRd
(2) 

where BSWIR represent the spectral reflectance of SWIR1 (1.55 ~ 1.75 

μm) or SWIR2 (2.08 ~ 2.35 μm) wave bands in Landsat-5 imagery, STR 
is the shortwave infrared transformed reflectance of SWIR1 or SWIR2, W 
is the local normalized SM content by the local minimum dry SM content 
θd and local maximum wet SM content θw, STRd and STRw are the STR at 
θd and θw, representing the STR in dry and wet soil. OPTRAM-STR1 or 
OPTRAM-STR2 is generated using SWIR1 or SWIR2, respectively. STRd 
and STRw are obtained from the specific STR-VI trapezoidal space and 
determined by the following equation (Mokhtari et al., 2023; Sadeghi 
et al., 2015): 

STRd = id1 + sd1VI (3) 

STRw = iw1 + sw1VI (4) 

where id1 and sd1 are the intercept and the slope of the dry edge, iw1 and 
sw1 are the intercept and the slope of the wet edge, in OPTRAM-STR. 
Based on the equation (3) and equation (4), the equation (2) can be 
transformed into the following form: 

w(OPTRAM − STR) =
id1 + sd1VI − STR

id1 − iw1 + (sd1 − sw1)VI
(5) 

Based on OPTRAM-STR, we generated two OPTRAM-STR covariates, 
OPTRAM-STR1 and OPTRAM-STR2. Fig. 3 illustrates the schematic di
agram for OPTRAM-STR and OPTRAM-NSDSI. The four vertices of the 
trapezoid correspond to the following conditions: dry bare soil, satu
rated bare soil, water-stressed vegetation, and well-watered vegetation.

For OPTRAM-STR and OPTRAM-NSDSI, previous studies have 
commonly utilized NDVI as the VI on the x-axis of trapezoidal models 
(Mokhtari et al., 2023; Tang et al., 2010). Nevertheless, NDVI values 
frequently fail to reach 0 in regions with bare soil or 1 in densely 
vegetated areas. To confine the x-axis between 0 and 1, FVC instead of 
NDVI in trapezoidal space in our study. The pixel dichotomy model was 
employed for the estimation of FVC (Gao et al., 2020): 

NDVI =
BNIR − BRed

BNIR + BRed
(6) 

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(7) 

where BNIR and BRed are the spectral reflectance of NIR (0.63 ~ 0.69 μm) 
and Red (0.76 ~ 0.90 μm) wave bands in Landsat-5, the NDVIveg and 
NDVIsoil are the NDVI of complete vegetation cover areas (99.5 percent 
quartile of NDVI) and bare soil areas (0.5 percent quartile of NDVI), 
respectively.

In constructing a trapezoidal model, it is essential to ensure align
ment between the wet edge and dry edge (Babaeian et al., 2018; Ma 
et al., 2022). In the majority of studies (Babaeian et al., 2018; Chen et al., 
2020; Ma et al., 2022; Sadeghi et al., 2017), the differentiation between 
dry and wet edges relied on visual interpretation, a method that may 
introduce subjectivity. In addressing this issue, our study employed a 
more automated and objective method to extract the wet and dry edges, 
as outlined by Tang et al. (2010). Initially, the STR-VI and NSDSI-VI 
space was partitioned based on the distribution of image elements. 
The STR and NSDSI were specifically divided into twenty intervals ac
cording to the FVC values. Each interval was subsequently divided into 
five smaller intervals. The maximum and minimum STR or NSDSI values 
were calculated for each interval. The wet and dry edges were then 
generated through linear regression between STR or NSDSI and NDVI, 
then the modeled maximum STR or NSDSI value based on the regression 
corresponds to the wet edge and the minimum STR or NSDSI value 
corresponds to the dry edge, respectively. This approach not only re
duces human subjectivity in wet and dry edge determination, but also 
decreases labour costs. The SM value within the trapezoidal space can be 
calculated by using the intercepts and slopes of the wet and dry edges in 
the trapezoidal space fit.
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3.4. Normalized shortwave-infrared difference bare soil moisture indices 
with Optical TRApezoid model (OPTRAM-NSDSI) for SM estimation

Similar to the OPTRAM-STR framework, we introduce a novel 
method termed OPTRAM-NSDSI, which employs NSDSIs as the y-axis 
instead of STR in OPTRAM. NSDSIs calculated based on normalizing the 
transformation of two spectral reflectances have the potential to miti

gate the influence of diverse factors on single soil reflectance. SM based 
on OPTRAM-NSDSI is calculated using the equation (8): 

W(OPTRAM − NSDSI) =
θ − θd

θw − θd
=

NSDSI − NSDSId

NSDSIw − NSDSId
(8) 

where W is the SM content for each pixel in trapezoidal space, NSDSI are 
the normalized shortwave-infrared difference bare soil moisture indices 
proposed by Yue et al. (2019), NSDSId and NSDSIw are the NSDSI at θd 
and θw, representing the NSDSI at dry and wet soil. Based on the 
assumption made by STR-VI that SM status influences vegetation growth 
and that variations in SM content result in alterations in the spectral 
properties of vegetation (Ambrosone et al., 2020; Chen et al., 2014), the 
NSDSIw and NSDSId can be determined by the following VI related 
functions: 

NSDSIw = iw2 + sw2VI (9) 

NSDSId = id2 + sd2VI (10) 

Table 1 
Date of the Landsat-5 images used for the two study areas.

Study 
area

Image date

Zhuxi Jan. 03rd, Jan. 08th, Feb. 05th, Feb. 15th, Apr. 20th, May. 13rd, May. 
28th, Jun. 04th, Jun. 27th, Jul. 09th, Jul. 30th, Aug. 10th, Sept. 16th, 
Nov. 22nd, Dec. 13rd, Dec. 29th

Heshan Mar. 23rd, Apr. 03rd, Apr. 12nd, May. 05th, May. 14th, May. 20th, May. 
29th, Jun. 06th, Jun. 15th, Jul. 17th, Aug. 11st, Aug. 25th, Sept. 01st, 
Nov. 04th, Nov. 14th, Nov. 20th

Fig. 2. The flow chart using C, NDVI, NSDSIs, OPTRAM-NSDSI estimated SM and OPTRAM-STR estimated SM covariates for SOM mapping. C: commonly-used; 
NDVI: Normalized Difference Vegetation Index; NSDSIs: normalized shortwave-infrared difference bare soil moisture indices; OPTRAM-NSDSI: normalized 
shortwave-infrared difference bare soil moisture indices with Optical TRApezoid Model; OPTRAM-STR: shortwave infrared transformed reflectance with Optical 
TRApezoid Model.
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where, id2 and sd2, iw2 and sw2 are the intercept and the slope of the dry 
and wet edge in OPTRAM-NSDSI. Based on equation (9) and equation 
(10), the W for each pixel can be defined as a function of VI and NSDSI: 

w(OPTRAM − NSDSI) =
id2 + sd2VI − NSDSI

id2 − iw2 + (sd2 − sw2)VI
(11) 

where the NSDSI is the NSDSI1, NSDSI2 and NSDSI3 (Table.1). Three 
OPTRAM-NSDSI models (OPTRAM-NSDSI1, OPTRAM-NSDSI2, and 

OPTRAM-NSDSI3) were developed to estimate the SM content.

3.5. Covariates combinations and screening

Subsequently, four distinct combinations of covariates were gener
ated for each observation date: “C”, “C + NDVI”, “C + NSDSIs”, “C +
OPTRAM-NSDSI” and “C + OPTRAM-STR”. The combination denoted as 
“C” exclusively consisted of commonly-used environmental covariates 
and “C + NDVI” consisted of commonly-usde environmental covariates 
and NDVI, while the combinations “C + NSDSIs” and “C + OPTRAM- 
NSDSI” combinations included the commonly-used environmental 
covariates with NSDSIs (NSDSI1, NSDSI2, and NSDSI3) and SM cova
riates estimated with OPTRAM-NSDSI (OPTRAM-NSDSI1, OPTRAM- 
NSDSI2, and OPTRAM-NSDSI3), respectively. In comparison to 
OPTRAM-NSDSI estimated SM effectiveness, we also employed the 
original OPTRAM-STR (OPTRAM-STR1 and OPTRAM-STR2) estimated 
SM to form the covariate combination “C + OPTRAM-STR”. In cova
riates screening of different covariates combinations, the Deviance In
formation Criterion (DIC) was utilized to determine the most suitable 
combination of environmental covariates for each environmental 
covariates of Zhuxi and Heshan (Arshad et al., 2020; Huang et al., 2017; 
Li et al., 2018; Rue et al., 2009). A smaller Deviance Information Cri
terion (DIC) suggests a better model fit. Environmental covariates were 
systematically removed from the model, and their DIC values were 

Table 2 
The descriptions of Normalized Shortwave-infrared (SWIR) Difference Bare Soil 
moisture Indices (NSDSIs, 1 ~ 3).

Indices Formula Reference

NSDSI1 BSWIR1 − BSWIR2

BSWIR1
Yue et al. (2019)

NSDSI2 BSWIR1 − BSWIR2

BSWIR2
NSDSI3 BSWIR1 − BSWIR2

BSWIR1 + BSWIR2

Notes: the BSWIR1 and BSWIR2 represent the spectral reflectance of SWIR1 (1.55 ~ 
1.75 μm) and SWIR2 (2.08 ~ 2.35 μm) wave bands in Landsat-5 imagery, 
respectively.

Fig. 3. The schematic diagram of STR-VI and NSDSI-VI trapezoid space of OPTRAM-STR and OPTRAM-NSDSI for SM estimation. The green dot represents an 
arbitrary pixel within an image. NSDSI: normalized shortwave-infrared difference bare soil moisture indices; STR: shortwave infrared transformed reflectance; 
OPTRAM: Optical TRApezoid Model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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compared to identify the combination of covariates with the lowest DIC 
values.

3.6. INLA-SPDE for SOM prediction

The Integrated Nested Laplace Approximation with the Stochastic 
Partial Differential Equation (INLA-SPDE) approach was utilized as the 
SOM prediction model. By taking into account the spatial correlation of 
soil sample points and environmental covariates, this model can provide 
higher modeling accuracies compared with random forest, residual 
maximum likelihood, or ordinary kriging (Huang et al., 2017; Yang 
et al., 2023a). The hierarchical model implemented in INLA-SPDE was 
utilized in this study to predict SOM (Huang et al., 2017; Wu, 2021). 
This model comprises three components: the intercept, the spatial fixed 
effects encompassing covariates and their coefficient matrices, and the 
spatial random effect associated with spatial locations. The three com
ponents can be articulated as demonstrated in previous studies (Arshad 
et al., 2020; Huang et al., 2017; Wang and Zuo, 2021; Wu, 2021; Yang 
et al., 2023a): 

ηk = β0 +
∑B

b=1
βbxbk + ξ

(
si, sj

)
(12) 

Where ηk is an additive linear estimation representing the spatially 
predicted soil properties; the first term β0 is the intercept; xbk is the 
environmental covariate of k, βb is the coefficient of the ith environ
mental covariate, 

∑B
b=1βbxbk represents the linear fixed effects consist

ing of environmental covariates, and ξ
(
si, sj

)
is used to represent spatial 

random effect and can be expressed as the Matérn covariance function 
(Li et al., 2018; Wang and Zuo, 2021; Yang et al., 2023a), which is a 
function that reflects spatial autocorrelation (Huang et al., 2017; Li 
et al., 2018; Wu, 2021).

In the mesh setting of the INLA-SPDE model, the critical parameters 
including max.edge, cutoff, and offset were configured as follows: (0.03, 
0.1) for max.edge, 0.02 for cutoff, and (− 0.5, 0.1) for offset. The INLA- 
SPDE model was implemented utilizing the “INLA” package in the R 
language (https://www.r-inla.org/).

3.7. Evaluation of the prediction

Five-fold cross-validation was utilized to assess the prediction ac

curacy using different covariate combinations in each study area, and 
the average of cross-validation was used as an accuracy result. The 
sampling points in each study area were divided into five subsets of 
equal size. Four segments in turn were employed for training the models, 
with the remaining subset allocated for validation (Abriha et al., 2023). 
We utilized Lin’s concordance correlation coefficient (LCCC) (Carrasco 
et al., 2013; Lawrence, 1989) and coefficient of determination (R2) to 
assess the mapping accuracy. The computation of these two indices is 
outlined as follows (Yang et al., 2023a): 

LCCC =
2rσyσŷ

σ2
y + σ2

ŷ + (y − ŷ)2 (13) 

R2 = 1 −

∑n
i=1(yi − ŷi )

2

∑n
i=1(yi − y)2 (14) 

where n is the sample size of validation points, yi and ŷi is observed and 
predicted SOM value at the corresponding validation points, r is the 
correlation coefficient between yi and ŷi , y and ŷ, σy and σŷ are the 
average and variance of yi (observed SOM) and ŷi (predicted SOM).

4. Results

4.1. Statistical description of the observed SOM

Fig. 4 illustrates the SOM histograms for Zhuxi (a) and Heshan (b) 
study areas. Zhuxi demonstrated a higher average SOM content and 
lower skewness in comparison to Heshan. Both study areas exhibited 
substantial variation in SOM content, with a coefficient of variation (CV) 
of 77.3% in Zhuxi and 66.2% in Heshan.

4.2. The generated NSDSIs and SM variables estimated by OPTRAM

Fig. 5 depicts scatter plots illustrating the dry and wet edges and the 
fitting equation of the NSDSI-FVC trapezoid space using OPTRAM at the 
optimal date with the highest prediction accuracy as an example. The 
spatial distribution of STR and STR-FVC trapezoid space is shown in 
Fig. S1 and Fig. S2. The spatial distributions of NSDSI-FVC features in 
both study areas exhibit trapezoid-like shapes, suggesting a positive 
correlation between NSDSI and FVC. Furthermore, the trapezoidal 

Fig. 4. The histograms of SOM content based on samples in the Zhuxi (a) and Heshan (b) study area.
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distribution of NSDSI-FVC space indicates a significant correlation be
tween SM and NSDSI, even in areas with dense vegetation. Moreover, 
Zhuxi displays a larger trapezoidal area in comparison to Heshan, which 
may indicate a higher level of variability in SM.

Fig. 6 illustrates the spatial distribution of three covariates: NSDSIs, 
OPTRAM-NSDSI estimated SM, and OPTRAM-STR estimated SM, of the 
the two study areas. In Zhuxi, higher NSDSIs and OPTRAM-NSDSI 
estimated SM values appear in the western hills and some valley 

areas. In Heshan, higher values of NSDSIs and OPTRAM-NSDSI esti
mated SM are observed in the eastern wide floodplains and valleys with 
lower altitudes, and lower values usually are shown in gentle slopes with 
farmland. The spatial distribution of NSDSIs is close to that of the SM 
variables generated using OPTRAM-NSDSI. However, the spatial distri
bution of OPTRAM-STR estimated SM, which is similar to STR (Fig. S1), 
differs from either NSDSIs or OPTRAM-NSDSI estimated SM. In Zhuxi, 
OPTRAM-STR estimated SM is lower in high-altitude hilly areas, while 

Fig. 5. The scatter plots of dry and wet edges of NSDSI-FVC trapezoid space and their fitting equations of dry and wet edges (image on the optimal date with the 
highest prediction accuracy was taken as an example). The red and blue dotted line represents the dry edge and the wet edge, respectively. NSDSI: normalized 
shortwave-infrared difference bare soil moisture indices; FVC: fractional vegetation cover. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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Fig. 6. The spatial distribution of the NSDSIs (a, b, c and i, j, k), OPTRAM-NSDSI estimated SM (d, e, f and l, m, n) and OPTRAM-STR estimated SM covariates (g, h 
and o, p) in Zhuxi and Heshan, NSDSI: normalized shortwave-infrared difference bare soil moisture indices, OPTRAM-NSDSI: normalized shortwave-infrared dif
ference bare soil moisture indices with Optical TRApezoid Model, OPTRAM-STR: shortwave infrared transformed reflectance with Optical TRApezoid Model.
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in Heshan, it is lower in valley areas and higher in farmland areas. 
Notably, the estimated SM values are similar across different bands with 
the same method.

4.3. The covariates selection for different covariate combinations

Table. 3 shows the selected covariates for the four environmental 
covariates combinations in SOM mapping at the optimal date, respec
tively. In the “C” covariates combination, ELEV, SLP, TWI, SType, TEM 
and PER were selected in Zhuxi, ELEV, plan and prof were selected in 
Heshan. NDVI on May 13th for Zhuxi and May 29th for Heshan with the 
highest correlation with the measured SOM was used. In “C + NSDSIs”, 
“C + OPTRAM-NSDSI” and “C + OPTRAM-STR”, SM indices derived 
from different bands were selected for Zhuxi and Heshan, respectively.

4.4. SOM prediction accuracies

Fig. 7 illustrates the LCCC and R2 values obtained from cross- 
validation for SOM prediction using different environmental combina
tions in Zhuxi and Heshan. Each result is determined by the optimal 
covariates selected within each environmental combination using the 
method outlined in section 3.4. The results indicate that using either 
NSDSIs, OPTRAM-NSDSI or OPTRAM-STR estimated SM improved the 
mapping accuracies of Zhuxi and Heshan compared with using the 
commonly-used environmental covariates. The added value of NSDSIs 
and OPTRAM-NSDSI is higher than OPTRAM-STR in both Zhuxi and 
Heshan. Adding NDVI improved the accuracy of 5.8% in terms of LCCC 
compared with the “C” covariates combination in Zhuxi, while NDVI 
didn’t improve the mapping accuracy in Heshan, thus we didn’t 
compare the “C + NDVI” with those covariates combinations with SM 
variables.

Although not all the SM variables adding to the commonly-used 
covariates generated higher mapping accuracies than NDVI, several 
SM variables (i.e. Apr. 20th, Jun. 04th, Jun. 27th, Aug. 10th, and Nov. 
22nd in Zhuxi) generated higher accuracies than NDVI. This indicates 
that SM variables at appropriate dates could be a more effective pre
dictor than NDVI. The highest improvement of accuracy for Zhuxi occurs 
on Apr. 20th. At this date, “C + NSDSIs” and “C + OPTRAM-NSDSI” 
show an increase of 26.8% and 18.1% in LCCC compared to “C”, 
respectively, NSDSIs are more effective than OPTRAM-NSDSI estimated 
SM at this date. In the case of Heshan, the largest improvement of LCCC 
was observed on Jun. 06th, with an increase of 41.7% and 56.7% for “C 
+ NSDSIs” and “C + OPTRAM-NSDSI”, respectively. At the nearby dates 
of May. 29th and Jun. 15th, OPTRAM-NSDSI estimated SM also obtained 
a large improvement in accuracy. In this case, OPTRAM-NSDSI esti
mated SM showed a more promising predictive power than NSDSIs. By 
examining the mapping accuracy and NDVI change curves along image 

dates, it shows that the largest accuracy improvement in both Zhuxi and 
Heshan appears around the spring green-up period, not the bare soil or 
the densest vegetation period. It may indicate that images at this date 
are capable of showing the variation in SM over the study area which is 
related to the spatial variation of SOM. The average improvement in 
accuracy (6.6% with “C + NSDSIs” and 6.2% with “C + OPTRAM- 
NSDSI”) for Zhuxi is lower than that of Heshan (8.6% and 14.7%), 
probably due to more complex soil variation and soil-environment re
lationships in Zhuxi. The results of R2 are similar to those of LCCC. The 
Scatterplot of measured SOM and predicted SOM using different cova
riates combinations in (C, C + NDVI, C + NSDSIs, C + OPTRAM-NSDSI 
and C + OPTRAM-STR) at Apr. 20th for Zhuxi and Jun. 06th for Heshan 
are shown in Fig. S3.

4.5. The predicted SOM maps

Fig. 8 displays the predicted SOM maps generated using different 
combinations of covariates at the dates with their highest mapping ac
curacies. The results of SOM mapping at the other dates with SM 
covariates are presented in Fig. S4 to Fig. S9. The spatial distribution of 
SOM maps with SM variables generated from remote sensing images of 
different dates in both Zhuxi and Heshan holds a similar pattern. 
However, differences do exist, mainly due to the input SM variables at 
different dates. The spatial distribution of SOM predicted by each 
combination of covariates displays similar patterns for each study area 
(Fig. 8). The results show that in Zhuxi, the predicted SOM content is 
higher in the eastern high-elevation, western river valley and northwest 
flat region, in Heshan, the predicted SOM is higher in the river valley 
area with lower elevation. The addition of NDVI, NSDSIs, OPTRAM- 
NSDSI, or OPTRAM-STR covariates to the commonly-used variables 
results in more detailed spatial variation (Fig. 8b, c, d and g, h, i). The 
difference between the predicted SOM using the combination of “C +
NSDSIs” (Fig. 8b and Fig. 8g) and “C + OPTRAM-NSDSI” (Fig. 8c and 
Fig. 8h) is illustrated in Fig. 8e and Fig. 8j. Larger differences were 
observed in the mapping results between using the combinations “C +
NSDSIs” and “C + OPTRAM-NSDSI” in Zhuxi than in Heshan. This may 
be related to that Zhuxi with a larger SOM content range has more 
complex soil variation characteristics and environmental conditions 
than Heshan.

5. Discussions

5.1. Applications of NSDSIs and OPTRAM-NSDSI for SOM mapping

In this study, it was observed that using both NSDSIs and the SM 
variables estimated by OPTRAM-NSDSI can improve the accuracy of 
SOM mapping. This is related to that SM plays a crucial role in influ
encing the vegetation growth and soil carbon turnover, and has a direct 
impact on the abundance and activity of soil microorganisms by regu
lating the availability of oxygen and water within soil (Linn and Doran, 
1984; Shabtai et al., 2022; Skopp et al., 1990; Vanderborght et al., 
2024). Furthermore, Feng and Liu (2015) suggest that agricultural 
irrigation activities and land cover have a significant impact on SM, in 
addition to precipitation, accordingly the spatial distribution of SM can 
indicate irrigation or other related agricultural practices.

We utilized the NSDSI indices and OPTRAM-NSDSI to estimate the 
SM. NSDSIs are calculated from SWIR1 and SWIR2 bands, while 
OPTRAM-NSDSI is calculated from NSDSIs combined with the Optical 
TRApezoid Model. SWIR is considered the optimal band for the inver
sion of SM in optical bands (Sadeghi et al., 2015), the reflectance of 
SWIR is linearly correlated with SM (Sadeghi et al., 2017; Sadeghi et al., 
2015; Yue et al., 2019). Different from the single spectral calculation 
method like STR, NSDSIs involve the normalized transformation of two 
spectral reflectances, making them less susceptible to complex in
terferences (Du et al., 2024). This may be a reason that OPTRAM-NSDSI 
generated a larger improvement in prediction accuracy than OPTRAM- 

Table 3 
The selected covariates for different covariates combinations in Zhuxi and 
Heshan of optimal date.

Study 
area

Combinations The selected Covariates

Zhuxi C ELEV, SLP, TWI, SType, TEM, PER
C + NDVI ELEV, SLP, TWI, SType, TEM, PER, NDVI
C + NSDSIs ELEV, SLP, TWI, SType, TEM, PER, NSDSI1, 

NSDSI2, NSDSI3
C + OPTRAM- 
NSDSI

ELEV, SLP, TWI, SType, TEM, PER, OPTRAM- 
NSDSI1, OPTRAM-NSDSI3

C + OPTRAM-STR ELEV, SLP, TWI, SType, TEM, PER, OPTRAM- 
STR1, OPTRAM-STR2

Heshan C ELEV, plan, prof
C + NDVI ELEV, plan, prof, NDVI
C + NSDSIs ELEV, plan, prof, NSDSI2, NSDSI3
C + OPTRAM- 
NSDSI

ELEV, plan, prof, OPTRAM-NSDSI1, OPTRAM- 
NSDSI2, OPTRAM-NSDSI3

C + OPTRAM-STR ELEV, plan, prof, OPTRAM-STR1, OPTRAM-STR2
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STR. This indicates that OPTRAM-NSDSI can be a potential alternative 
for the estimation of SM for an area with vegetation coverage in addition 
to OPTRAM-STR. Another advantage of OPTRAM is that the model 
doesn’t require thermal bands or separate parameterization and atmo
spheric calibration of images for each distinct observation date. The 
absence of thermal bands allows for the utilization of OPTRAM-NSDSI 
on high spatial resolution satellites that only have optical bands, such 
as Sentinel-2 (Sadeghi et al., 2017). Compared with some SM products 
based on microwave remote sensing, OPTRAM combined with optical 
remote sensing has a higher spatial resolution to fulfill more detailed 
DSM requirements. It is important to determine the wet and dry edges to 
employ OPTRAM for calculating SM. In this paper, we adopted an 
automated method of Tang et al. (2010), which makes the parameter 
determination more objective than the visual interpretation way.

Choosing the appropriate date for remote sensing images is crucial 
for using NSDSIs and OPTRAM-NSDSI covariates. The SM variables at 
appropriate dates are more effective than NDVI at dates highly corre
lated with SOM. The dates of the SM variables with the highest pre
diction accuracies are different with the dates of the NDVI most 
correlated with SOM, indicating distinct mechanisms of how SM and 
vegetation relate to SOM. When we examine the prediction accuracies at 
different dates and the NDVI profiles along the same period in Fig. 7, we 
found that the optimal dates didn’t appear at the densest vegetation 
stage or bare soil stage, but at the time when NDVI starts to increase, 
about the “green up” stage of vegetation growth. This may be associated 
with significant periods such as the onset of the initiation of vegetation 
growth, the commencement of leaf sprouting in trees, or human irri
gation activity (Ryan et al., 2017). It is reported that vegetation greening 
can be very sensitive to SM (Yang et al., 2023b). Lan et al. (2024) and Li 
et al. (2023) suggested that vegetation consumes soil water through 
evapotranspiration during the greening stage, thus playing an important 
role in soil water availability dynamics. During the period of the “green 
up” phase, the stored soil moisture could be correlated to the vegetation 
development and the carbon input into the soil, thus changes in field 

moisture content may highlight the spatial differentiation of SM or SOM. 
More research is necessary to explore the optimal image dates for esti
mating SM in other areas. Experiments on the relationship among the 
measured SM, the estimated SM, and SOM at different dates should also 
be conducted in the future to understand the complex processes behind 
SM relating to SOM.

Both NSDSIs and OPTRAM-NSDSI estimated SM generated higher 
prediction accuracies than OPTRAM-STR in the two study areas with 
different vegetation densities. However, the largest improvement of 
prediction accuracy obtained by OPTRAM-NSDSI estimated SM is higher 
than that of NSDSIs in Heshan, and NSDSIs generated a larger highest 
accuracy than OPTRAM-NSDSI estimated SM in Zhuxi. This may be 
related to that Heshan has a relatively uniform vegetation type (crops) 
with a similar growth period, and a high vegetation cover density during 
the growth season of crops. However, Zhuxi has more complex land use 
and a relatively lower vegetation cover density. The highest NDVI dur
ing the dense vegetation period is 0.57 vs. 0.27 in Heshan and Zhuxi, 
respectively. This may indicate that OPTRAM-NSDSI is more effective 
than NSDSI in areas with high vegetation densities, although either of 
these two variables is a potentially effective predictor for SOM in the two 
study areas with different vegetation coverage densities. The generated 
SM covariates provide a higher added value of SOM prediction in 
Heshan than Zhuxi. This is probably because Zhuxi has more complex 
soil-environment relationships with more land use types than Heshan.

5.2. Limitations and perspectives

The study shows the effectiveness of the remote sensing-based esti
mated SM for SOM mapping, however, there are some limitations and 
further perspectives in this study. Firstly, optical satellites are suscep
tible to interference from cloud cover, leading to a reduction in the 
quantity of available images. Consequently, this results in an uneven 
distribution of the time series of remote sensing images (Ambrosone 
et al., 2020; Zhang and Zhou, 2016). This may be addressed by 

Fig. 7. The LCCC (a and c) and R2 (b and d) of SOM predictions using different covariates combinations (C, C + NDVI, C + NSDSIs, C + OPTRAM-NSDSI and C +
OPTRAM-STR) from different dates at the two study areas. (a) and (b) are for Zhuxi, (c) and (d) are for Heshan. The NDVI curve is obtained by averaging the values at 
the sample points. C: combination only has commonly-used environmental covariates; C + NDVI: combination composed of the commonly-used environmental 
covariates with Normalized Difference Vegetation Index; C + NSDSIs: combination composed of the commonly-used environmental covariates with Normalized 
shortwave-infrared difference bare soil moisture indices; C + OPTRAM-NSDSI: combination composed of the commonly-used environmental covariates with 
Normalized shortwave-infrared difference bare soil moisture indices with Optical TRApezoid Model estimated SM. C + OPTRAM-STR: combination composed of the 
commonly-used environmental covariates with shortwave infrared transformed reflectance with Optical TRApezoid Model estimated SM.

Fig. 7. (continued).
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integrating multiple satellites, such as the MODIS series satellites (Araya 
et al., 2016; Babaeian et al., 2018; Chen et al., 2018). Secondly, the 
OPTRAM-NSDSI is to estimate SM based on a linear fit at the wet and dry 
edges, which may be not optimal for acquiring precise SM information 
(Ambrosone et al., 2020; Ma et al., 2022). Non-linear fitting to wet and 
dry edge equations may be an option, such as exponential or quadratic 
fit (Ambrosone et al., 2020; Ma et al., 2022). Thirdly, NDVI improved 
the prediction accuracies in Zhuxi study area, as in many other studies 
(He et al., 2021; Yang et al., 2020). Combining both NDVI and SM 
indices may work in SOM prediction in some areas, which can be further 
investigated. Furthermore, we used the remote sensing images on 
different dates to estimate SM separately, while extracting more features 
from SM profiles over a long period may provide extra information on 
SM variation for SOM prediction. Previous studies that generated 
phenological variables or variables indicating crop periodic growth 
characteristics on NDVI time series data, and found that the inclusion of 
those variables improved the accuracy of SOC mapping (Yang et al., 
2020; Yang et al., 2019). This may provide inspiration for extracting 
new variables from remote sensing-based SM indices over years. Further 
investigations can be conducted at this aspect.

6. Conclusion

Our study introduces a new approach, OPTRAM-NSDSI, using 
NSDSIs instead of STR within the trapezoid model, to estimate SM in 
areas with vegetation coverage, and conduct a comparative analysis 
between the OPTRAM-NSDSI estimated SM and NSDSIs, OPTRAM-STR 
to map SOM across two study areas with different vegetation densities 
and land use types. The results indicate that adding SM variables into the 
commonly-used environmental covariates improved SOM prediction, 
and NSDSIs or the SM variables generated using OPTRAM-NSDSI pro
vide higher added value than the SM variable generated using OPTRAM- 
STR in either study area. The results also indicate that OPTRAM-NSDSI 
is more effective than NSDSIs in areas with higher vegetation densities 
(Heshan study area) while NSDSIs generated the highest prediction ac
curacy improvement in areas with lower vegetation densities (Zhuxi 
study area). The highest accuracy improvement of 26.8% in terms of 
LCCC was obtained by NSDSIs on Apr. 20th in Zhuxi, and the highest 
improvement of 56.7% in terms of LCCC was obtained by OPTRAM- 
NSDSI estimated SM on Jun. 6th in Heshan, respectively. The optimal 
dates are about the “green-up” stage of vegetation growth. This study 
examines the applicability of three remote sensing-based SM variables at 
different dates for SOM mapping in two study areas with different 
vegetation densities, which provides a reference for using SM informa
tion to improve SOM mapping in areas covered with vegetation.
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