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A B S T R A C T

Extraction of agricultural field parcels is of great importance for agricultural condition monitoring, farm man
agement, and food security. Several methods have been developed to map the distribution of agricultural field 
parcels, among which deep learning-based supervised learning is increasingly employed. Nevertheless, advanced 
deep learning models face two major limitations: limited ability to generalize across different spatial，temporal 
and sensor contexts with varying scene and object characteristics, and high requirement for annotated datasets to 
support training and validation. To address this challenge, we introduce a novel unsupervised domain adaptation 
(UDA) framework (UDA-Field Teacher, UDA-FT) for agricultural field parcel instance segmentation, which is 
designed to transfer knowledge from labeled source domains to unlabeled target domains. UDA-FT is based on 
the Mask R-CNN framework and incorporates a target-oriented teacher model and a cross-domain student model. 
This cross-domain student model embeds an image adaptation module and an instance adaptation module, 
employing adversarial learning strategies to mitigate cross-domain distribution differences. Additionally, we 
propose a consistency mutual learning module based on soft pseudo-label technology, overcoming the limitations 
of traditional hard pseudo-labeling in confidence threshold selection and improving model robustness in the 
target domain. Furthermore, to address the difficulty in generating independent instance labels for densely 
packed agricultural field parcels and capturing spatial contextual relationships during soft pseudo-label gener
ation, we propose two data augmentation methods, namely CutMatch (CM) and LeakyMask (LM). We adopted 
the proposed framework on cross-scene and cross-sensor datasets to evaluate its effectiveness and robustness 
under different scenes. Quantification and visualization results demonstrate our UDA-FT outperforms existing 
domain adaptation methods for cross-scene and cross-sensor agricultural field parcels across all metrics. Ablation 
studies highlight the substantial impact of strong data augmentation on model performance, emphasizing the 
importance of learning from out-of-distribution data. As an innovative application of unsupervised domain 
adaptation in agricultural field parcel instance segmentation, this research provides a novel method for domain 
shift in agricultural remote sensing imagery, enabling more accurate field instance segmentation with significant 
implications for global agriculture.

1. Introduction

Agricultural fields, as a pivotal resource, play a key role in food se
curity (Weiss et al., 2020) and support environmental sustainability 

through biodiversity conservation and resource management (Pande 
and Moharir, 2023). Accurate information on the position and extent of 
agricultural fields is essential for resource and environmental manage
ment, such as farmland area estimation, crop yield prediction, and 
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farmland change pattern recognition (Corgne et al., 2016; Duveiller, 
2010). Currently, acquisition of agricultural field data still relies heavily 
on manual work, such as field investigation and agricultural data sta
tistics collection, requiring high labor costs and time expenditures, 
which often makes large-scale agricultural field survey impractical. 
Furthermore, on-site investigation and sampling of these fields are costly 
and time-consuming, typically allowing for the investigation of only a 
small number of locations and failing to capture data for the entire 
surface of the scene.

With the development of remote sensing technology, extraction of 
agricultural field parcels from satellite images has become a popular 
technology (Huang et al., 2018; Triantafyllou et al., 2019). Visual 
interpretation with ground observation is commonly needed to create 
detailed and accurate agricultural field maps at earlier time (Atzberger, 
2013; Wachowiak et al., 2017), but those methods are labor-intensive 
and expensive. Automated methods based on gray scale, color, texture 
or spectral and spatial information of remote sensing images have then 
been proposed (Cheng et al., 2020; Graesser and Ramankutty, 2017; 
Rydberg and Borgefors, 2001). These methods usually need to set pa
rameters carefully for each area, which limits model transferability and 
generalization.

Deep learning techniques, with great capacity in complex feature 
extraction and representation, have been applied in agricultural field 
extraction (Yuan et al., 2020). Specifically, semantic segmentation has 
shown great effectiveness in agricultural field parcel extraction. This 
type of approaches, including single-task models (Li et al., 2022; Xie 
et al., 2023; Zhang et al., 2020), multi-task models (Li et al., 2023; Long 
et al., 2022; Xu et al., 2023) and divided and stratified models (Wei 
et al., 2021; Xu et al., 2024; Xu et al., 2019) has greatly improved the 
accuracy and efficiency of remote sensing image interpretation. How
ever, the distribution of agricultural field is often closely arranged, as 
single-task models built for semantic segmentation shows poor perfor
mance in delineating closely arranged agricultural field parcels 
(Diakogiannis et al., 2020; Kampffmeyer et al., 2016; Kemker et al., 
2018). Multi-task models combining networks like semantic segmenta
tion and edge detection, can improve boundary accuracy but require 
complex post-processing and lacks adaptability (Li et al., 2023; Papa
domanolaki et al., 2021). Divided stratified models, tailored to specific 
scenes, require extensive labeled data, which increases training costs. 
Furthermore, scene-specific stratification and classification necessitate a 
well-defined manual partitioning approach, the accuracy of which ul
timately dictates the algorithm’s performance. (Mao et al., 2022; Xu 
et al., 2019; Zhou et al., 2019).

Given that semantic segmentation methods has the above-mentioned 
shortcomings, instance segmentation or panoptic segmentation has been 
adopted to detect individual instances for agricultural field parcel 
extraction (Garnot and Landrieu, 2021; Mei et al., 2022; Zhao et al., 
2022). Garnot and Landrieu (2021) proposed an end-to-end, single-stage 
method for field parcel panoptic segmentation based on time series 
remote sensing imagery. Mei et al. (2022) used instance segmentation 
framework Mask R-CNN (He et al., 2017) based on WorldView-3 satel
lite imagery to delineate smallholder field boundaries in Northeast 
India. Zhao et al. (2022) utilized the Hybrid Task Cascade (HTC) (Chen 
et al., 2019) model to segment agricultural field parcels from the high- 
resolution remote sensing images of JiLin-1, securing the champion
ship of the iFLYTEK Challenge 2021. Although the above methods 
achieves high accuracy and do not necessarily require complex post- 
processing, they are not able to adequately fit domains out of the 
training domain distribution, thus cannot be transferred to other scenes. 
The target study area often lacks instance annotations and exhibits a 
different data distribution compared to areas with available instance 
annotations, which limits the model’s generalization capability and its 
applicability to real-world scenarios. Furthermore, annotating data for 
instance segmentation is label-intensive task, making it costly and time- 
consuming to acquire sufficient training data, especially for large-scale 
applications.

To address the challenges of annotation cost and the inability of fully 
supervised learning to adapt to other domain, a potential strategy is to 
transfer the knowledge from densely labeled agricultural field parcel 
data of source domain to target domain data without annotations. 
Specifically, the source and target domains share the same feature space 
and label space, but have different marginal and/or conditional distri
butions. This can be achieved by training on the source domain and 
subsequently adapting the learned model parameters to the target 
domain through specific strategies. This unsupervised domain adapta
tion (UDA) technology has become a focus of research in the field of 
computer vision with the emergence of deep learning, particularly in 
image classification, object detection and semantic segmentation 
(Biasetton et al., 2019; Guan et al., 2022; Guizilini et al., 2021; Oza and 
Sindagi, 2024; Yu et al., 2022; Zou et al., 2018). These studies have 
demonstrated enhanced generalization and transferability capabilities 
by many advanced methodologies to reconcile feature distributions 
across various domains, including discrepancy-based (Chen et al., 
2020), reconstruction-based (Hu et al., 2022) and adversarial-based 
(Biasetton et al., 2019; Ganin et al., 2016; Guan et al., 2022; Guizilini 
et al., 2021). As the first work to apply adversarial learning to domain 
adaptation, domain-adversarial neural network (DANN) has served as 
inspiration for a multitude of subsequent research efforts (Ganin et al., 
2016). Adversarial learning is an effective strategy in unsupervised 
domain adaptation for deep learning, utilizing generative adversarial 
networks (GANs) to learn domain-invariant features (Goodfellow et al., 
2020). Specifically, GANs employ a generator to produce features from 
both source and target domains, while a discriminator distinguishes 
between these features. Through this adversarial process, the source and 
target domain features gradually become more similar and achieve 
domain alignment. Besides adversarial learning strategies, another 
effective approach in UDA is the pseudo-labeling method (Cho et al., 
2022; Litrico et al., 2023; Yuan et al., 2024). These methods typically 
employ a teacher-student model framework for UDA. The teacher 
model, trained on the source domain, generates pseudo-labels 
leveraging its acquired prior knowledge. The student model then 
learns from these pseudo-labels to adapt to the target domain, thereby 
enhancing the effectiveness of model transferability from source to 
target. Xiao et al. (2021) proposed a teacher-student competitive (TSC)- 
based unsupervised domain adaptation method to solve the source bias 
problem. An unsupervised domain adaptation method UDA-COPE was 
proposed by Lee et al. (2022), where a teacher-student framework were 
used to address annotation scarcity in category-level object pose esti
mation. Although teacher-student models achieve satisfying results in 
UDA by generating pseudo labels to guide student training, the teacher 
model operates independently without receiving feedback from the 
student model, which may lead to suboptimal or biased pseudo-label 
generation. On the basis of teacher-student architecture, mutual 
learning framework, firstly proposed by Zhang et al. (2018), allows both 
models to refine each other through collaborative training by enabling 
bidirectional knowledge exchange. Liu et al. (2020) proposed a cycle- 
consistent panoptic domain adaptation-based Mask R-CNN architec
ture, which enables unsupervised nuclear instance segmentation by 
learning from fluorescence microscopy images, significantly out
performing existing unsupervised domain adaptation methods. Li et al. 
(2022) developed a framework called Adaptive Teacher, which signifi
cantly improves cross-domain object detection performance through 
domain adversarial learning, weak-strong data augmentation, and 
teacher-student mutual learning. Yang et al. (2025) proposed the Ver
satile Teacher framework, which significantly improves cross-domain 
object detection performance through class-aware pseudo-label selec
tion (CAPS) and instance-level alignment using saliency maps. These 
works have demonstrated that teacher-student mutual learning is a 
powerful paradigm for UDA (Liu et al., 2022). Although these SOTA 
methods have demonstrated impressive performance, they often rely on 
“hard” pseudo-labels, which are sensitive to thresholding and can 
discard valuable information. Employing a teacher-student mutual 
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learning approach with a soft pseudo-labeling strategy could be a po
tential solution to address these challenges (Xu et al., 2021).

Currently, adversarial learning and pseudo-labeling have also been 
widely applied in remote sensing (Chen et al., 2022a; Chen et al., 2022b; 
Luo et al., 2024; Zhang et al., 2022a). Peng et al. proposed full-level 
domain adaptation network (FDANet), which leverages adversarial 
learning and a self-training pseudo-labeling approach for domain- 
adaptive building extraction from very-high-resolution (VHR) imagery 
(Peng et al., 2022). Huang et al. proposed a spatial-spectral weighted 
adversarial domain adaptation (SSWADA) network, utilizing an adver
sarial learning strategy to extract domain-invariant features for hyper
spectral wetland mapping (Huang et al., 2023). Luo et al. (2024)
proposed the CDST framework for unsupervised domain adaptation 
(UDA) in object detection for remote sensing imagery. This framework 
comprises two stages: mitigating domain shift between source and target 
domains using Cycle-GAN, and facilitating cross-domain transfer via a 
pseudo-labeling strategy. Although UDA has been widely applied in 
remote sensing, research in the agricultural domain and particularly in 
agriculture extraction remains relatively scarce. For agricultural field 
extraction, Zhang et al. (2022b) employed semantic segmentation and 
adversarial training approaches to extract agricultural field parcels in 
target domain without labels. However, this research did not produce 
instance masks for individual agriculture field parcels.

Although UDA strategy can solve the cross-domain remote sensing 
segmentation and detection problems, few previous studies has applied 
it in cross-domain agricultural field parcel instance segmentation. The 
variation of shapes and sizes of agricultural field parcels across different 
domains, coupled with inconsistencies in their spectral and textural 
characteristics pose significant challenges for cross-domain field parcel 
instance segmentation. In this paper, we propose an unsupervised 
domain adaptation framework for instance segmentation to address the 
challenge of suboptimal transfer learning performance. To address the 
challenges of varying environmental contexts and sensor characteristics, 
we also collected and processed diverse remote sensing images of agri
cultural landscapes, create two different datasets (cross-scene dataset 
and cross-sensor dataset) to train and evaluate the proposed unsuper
vised agricultural field segmentation method. The cross-scene dataset 
comprises remote sensing images from diverse geographical regions, 
enabling evaluation of model performance across different agricultural 
practices and landscapes. The cross-sensor dataset includes images 
captured by various remote sensing sensors with different resolution and 
spectral bands, which is intended to assess the model’s robustness and 
adaptability to the unique characteristics of each sensor in the detection 
and delineation of agricultural field parcels.

In summary, our contributions are primarily reflected in three 
aspects:

(1) We propose an unsupervised domain adaptation instance seg
mentation framework based on adversarial learning and consistency 
mutual learning, which we name as Unsupervised Domain Adaptation 
Field Teacher-Student network (UDA-FT). This framework includes an 
Image Adaptation Module, an Instance Adaptation Module, and a Con
sistency Mutual Learning Module for the segmentation of agricultural 
field parcels across scenes and sensors. To the best of our knowledge, we 
are the first to apply unsupervised domain adaptation to the extraction 
and mapping of agricultural field parcels across diverse scenes and 
sensors.

(2) We developed a data augmentation method called CutMatch 
(CM) to address the challenges of segmenting densely distributed agri
cultural field parcels across scenes or sensors, along with a data 
augmentation approach called LeakyMask (LM) to capture detailed 
contextual semantic information.

(3) To address the shortcomings of hard pseudo-labels commonly 
used in teacher-student models, we propose a soft pseudo-labeling 
strategy. This approach eliminates the need for manually setting 
threshold values and avoids issues such as noise introduction or the loss 
of valuable targets caused by inappropriate threshold selection, ensuring 

better training outcomes.

2. Study area and datasets

2.1. Study areas

We selected two types of datasets: cross-scene dataset and cross- 
sensor dataset to evaluate the applicability and effectiveness of our 
method facing the challenges of morphology, texture and spectral dis
tribution discrepancy across several domains in agricultural field parcel 
extraction. To expand diverse geographical and agricultural landscapes, 
we selected multiple study areas spanning Europe and Asia, as illus
trated in Fig. 1. The source domain in Denmark lies in a gentle, low- 
lying, and temperate landscape where parcels, though morphologi
cally diverse, have a relatively large overall area. In contrast, the target 
domains in China, Japan, Cambodia, and Vietnam are dominated by 
smallholder farming practices. In these countries, farmland plots are 
characteristically small and densely distributed, which adds to the dif
ficulty in the delineation of their fine-scale boundaries. This substantial 
appearance shift is useful for evaluating cross-domain generalization 
without leaking target-specific priors.

2.2. Data preparation

2.2.1. Cross-scene datasets
The proposed method is designed to adapt cross-scene domain- 

adaptive agricultural field parcel extraction. Towards cross-scene 
aspect, we selected Denmark as the source domain (referred to as the 
European dataset), and the Asian study areas as the target domain. For 
Denmark, we downloaded cloud-free (<2 % cloud cover) Esri Imagery 
(https://www.arcgis.com/home/item.html?id=10df2279f9684e4 
a9f6a7f08febac2a9), a global high-resolution imagery service provided 
by Esri, which aggregates data from multiple satellite and aerial sources 
including DigitalGlobe’s WorldView-2 and WorldView-3 satellites, 
GeoEye-1, and other providers. The provided data has been pre- 
processed and orthorectified, ensuring it is analysis-ready. This service 
offers imagery across multiple zoom levels, with spatial resolutions 
ranging from coarse scales to ultra-high resolutions finer than 0.1 m. 
While the native resolution of the underlying imagery in the mosaic 
varies, the service allows users to request data at specific resolutions. 
This resolution of 1.5 m was chosen because it effectively captures the 
boundaries of small to medium-sized agricultural field parcels, partic
ularly in the Asian dataset where fields are often smaller and densely 
packed, while also balancing computational efficiency for large-scale 
processing. We specifically used the RGB bands of the Esri World Im
agery for the Denmark dataset at the beginning of the growing period in 
May 2016 to ensure optimal visibility of vegetation for agricultural field 
delineation.

Like the European dataset, the Asian dataset was constructed by 
mosaicking multiple cloud-less Esri images (<2 %). We also downloaded 
1.5 m resolution Esri Imagery for the Asian study areas, which allows for 
the accurate delineation of fine-scale field boundaries in densely packed 
smallholder farming regions, while maintaining manageable data pro
cessing demands. We used the RGB bands of the Esri Imagery for the 
Asian dataset, with acquisition times focused on the peak growing sea
son of June to July to align with optimal vegetation growth for field 
parcel extraction.

The ground-truth reference annotations for this study were compiled 
from multiple public datasets and supplemented by our own manual 
visual interpretation and digitization. Annotations of Denmark dataset 
are obtained from the 2016 Denmark “Market” dataset, which is part of 
the European Union Land Parcel Identification System (LPIS) initiative 
(Xu et al., 2023). The Denmark study area includes more than 550,000 
crop field parcel polygons, each assigned with a unique identification 
number, a crop type from 293 classes, and its field area. For the Asian 
target domains, the labels for Japan were sourced from the fiboa project 
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(Field Boundaries for Agriculture, https://source.coop/repositories/fibo 
a/japan/description), the data for Vietnam and Cambodia were derived 
from the AI4SmallFarms dataset (Persello et al., 2023), and the refer
ence data for China were produced through a rigorous manual digiti
zation process with ArcMap 10.6 software by our team. To ensure the 
reliability and consistency of all reference data from different sources, a 
final quality control process was performed. We manually inspected all 
polygons against the imagery and found that over 95 % correctly aligned 
with visible field boundaries. For the small fraction with deviations, we 
performed manual corrections to standardize the final dataset to the 
highest possible quality. During editing, we enforced quantitative QC by 
applying a positional tolerance of ≤ 1 pixel at edges, removed duplicates 
using IoU ≥ 0.50, and corrected or excluded invalid polygons (self-in
tersections/holes).

Ensuring temporal consistency between imagery and reference data 
was another critical aspect of our data preparation. For the Denmark 
domain, both the Esri imagery and the LPIS annotations are from 2016. 
For the Asian domains, we exported Esri basemap tiles in June–July 
2024 (Wayback versions), and the tile-level Acquisition Date falls within 
May–August across 2015–2024. The corresponding annotations for 
Japan and China were also created in 2024. For Vietnam and Cambodia, 
the reference data were digitized in August 2021. To mitigate the po
tential impact of this temporal gap, a dedicated manual verification was 
conducted. We visually inspected these older annotations against the 
imagery and confirmed that the majority of parcel boundaries remained 
stable. Parcels that exhibited changes or mismatches were manually re- 
digitized to accurately reflect the imagery, thereby minimizing the 
impact of the temporal discrepancy.

In our study, for central Denmark, a total of 74,653 crop field parcels 
were available for training and validation. After preprocessing, which 
included converting multi-polygons to polygons for clarifying each field 
parcel, removing self-intersecting polygons and parcels categorized as 
unrelated to agricultural use (e.g., natural or permanently protected 
areas, forests), approximately 68,000 crop field parcels were retained 
for model training and validation. Due to GPU memory limitation, the 
large mosaicked remote sensing images could not be directly fed into 
training. To address this, we employed a sliding window approach with 
a size of 512 × 512 pixels to crop both the European dataset and Asian 
dataset into smaller image patches. Annotations for both the source 
domain (European dataset for training) and target domain (Asian 
dataset for validation) were segmented using identical sliding window 
coordinates, resulting in corresponding annotations for each 512 × 512 
image. The cropped images are shown in Fig. 2. The first and second 
rows display the Esri aerial imagery and corresponding annotation vi
sualizations from the European dataset, respectively. The third and 
fourth rows display the Esri Imagery and corresponding annotation vi
sualizations from the Asian dataset, respectively. After cropping, the 
European dataset comprised 2432 images with corresponding COCO- 
format annotations, while the Asian dataset contained 11,086 images. 
After that, an 8:2 ratio was used to split each of the two cropped datasets 
into training and validation sets. This resulted in 2026 training images 
and 406 validation images for the European dataset, and 8585 training 
images and 2501 validation images for the Asian dataset. With Denmark 
as the source domain, and China, Japan, Cambodia, and Vietnam as 
target domains, four datasets were created. As shown in Table 1, the four 
datasets are Denmark-China, Denmark-Japan, Denmark-Cambodia, and 

Fig. 1. Study area. Cross-scene dataset involves five countries: Denmark, China, Japan, Cambodia and Vietnam. Cross-sensor dataset involves more than 10 regions 
in above-mentioned Asian countries.
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Denmark-Vietnam, with cropped sample sizes of 4714, 3294, 1678, and 
1400, respectively. Each dataset was split into training and validation 
sets with an 8:2 ratio. The final sample sizes for training and validation 
are displayed in the fourth row of the table.

2.2.2. Cross-sensor datasets
Data from several different remote sensors, i.e. JiLin-1, PlanetScope, 

Esri Imagery and GF–2 (only for large-scale experiment) were used 
Fig. 3. Table 2 presents the sensors and study areas involved in the cross- 
sensor dataset. For Esri Imagery and PlanetScope, representative large- 

scale agricultural areas in Japan were selected as study areas. The Esri 
Imagery used here is the same Esri Imagery as in the cross-scene dataset, 
with a 1.5 m resolution and RGB bands, acquired during the growing 
season in June and July. The Jilin-1 public dataset consists of imagery 
collected during the vegetation growing season in June. GF-2 was 
selected to represent large-scale agricultural areas in Jiangsu Province in 
China. To investigate the practicality of our proposed method across 
different sensor data, we selected four cross-sensor datasets: JiLin-1-Esri 
Imagery, Esri Imagery-PlanetScope, Esri Imagery-JiLin-1, and 
PlanetScope-Esri Imagery. The JiLin-1 remote sensing images and 

Fig. 2. Cross-scene dataset. (a) Imagery from the source domain (Denmark). (b) Source domain annotations. (c) Imagery from the target domain (various Asian 
regions). (d) Target domain annotations.

Table 1 
Cross-scene datasets.

Source domain Target domain

Denmark China Japan Cambodia Vietnam

Number of imageries used 2 2 2 28 30
Image acquisition time May 2016 July–August 2023 June–July 2024 June–July 2015 May–June 2021

Number of patches 2432 4714 3294 1678 1400
Train/Validation number 2026/406 3771/943 2634/660 1337/341 1103/297

Dataset \ Denmark-China Denmark-Japan Denmark-Cambodia Denmark-Vietnam
Annotations sources LPIS Ours fiboa AI4SmallFarms AI4SmallFarms

Annotations acquisition time May 2016 June 2024 July 2024 August 2021 August 2021
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annotations, sourced from the iFLYTEK Challenge 2021 Cultivated Land 
Extraction Competition dataset (Zhao et al., 2022), cover many agri
cultural areas in various regions in Southern China. Original data in
cludes 16 JiLin-1 satellite images of varying sizes, with pixel counts 
ranging from 5000 to 18,000. For consistency in our analysis, we used 
only the RGB bands of the JiLin-1 imagery. Each image contains four 
spectral bands: blue, green, red, and near-infrared. The spatial resolu
tion of the JiLin-1 multispectral images is between 0.75 and 1.1 m. The 
number of annotations varies for each JiLin-1 image, ranging from 149 
crop field instance annotations of one image to 4821 (Zhao et al., 2022). 
The four-band PlanetScope imagery from Planet Lab Inc. (San Francisco, 
CA, USA) was also used in this study. We downloaded data from Planet 
Explorer (https://www.planet.com/) through a research and education 

license with Planet Lab Inc. This study utilized orthorectified and pre- 
processed PlanetScope Level 3B surface reflectance data, ensuring geo
metric, radiometric, and atmospheric accuracy. This 3 m resolution 
imagery, including red, green, blue, and near-infrared bands, was spe
cifically downloaded to match the spatial extent of the Asian dataset 
used for cross-scene analysis. We used the RGB bands of the PlanetScope 
imagery, with acquisition times in June and July to align with the 
growing season for optimal field visibility. And the Esri Imagery utilized 
is the same as used in the cross-scene dataset.

To further validate the generalizability of our method, we addi
tionally incorporated experiments using GaoFen-2 (GF-2) satellite data 
for large-scale agricultural field parcel extraction. The GF-2 images were 
selected for large-scale inference and evaluation purposes, and the an
notations were created through manual visual interpretation and digi
tization of a small portion of these images. We only randomly selected 
multiple cloud-free (<2 % cloud cover) GF-2 images between June and 
August 2023 covering various regions within Jiangsu Province in China. 
These images contain both multispectral and panchromatic bands. For 
the multispectral data, we performed radiometric calibration, atmo
spheric correction, and orthorectification to obtain surface reflectance 
data. The panchromatic bands underwent radiometric calibration and 
orthorectification. Finally, we fused the processed multispectral and 
panchromatic data to generate GF-2 images with a spatial resolution 
better than 1 m. For consistency, we used the RGB bands of the GF-2 
imagery for inference. After excluding images with limited agricul
tural field coverage, we retained six images for our study.

Similar to the cross-scene dataset, the large remote sensing images 
were cropped into smaller patches using a sliding window approach to 
create the final training datasets. For both the JiLin-1, PlanetScope, Esri 
Imagery and GF-2, we opted for a cropping size of 512 × 512 pixels to 
reduce GPU memory consumption. Finally, we divided each dataset into 
training and validation sets using an 8:2 ratio.

2.2.3. Datasets distribution analysis
Due to differences in geographic regions, imaging sensors, and 

Fig. 3. Cross-sensor dataset. (a) Esri Imagery and its corresponding annotations. (b) PlanetScope imagery and its corresponding annotations. (c) JiLin-1 imagery and 
its corresponding annotations. (d) GF-2 imagery and its corresponding annotations.

Table 2 
Cross-sensor datasets.

Esri 
Imagery

JiLin-1 PlanetScope GF-2

Number of 
imageries used 4 16 7 6

Image 
acquisition 

time

June–July 
2024 June 2021

June–July 
2024

June–August 
2023

Samples’ 
location Japan China Japan China

Number of 
patches 6372 4267 1792 8816

Resolution 1.5 m
0.75 m ~ 

1.1 m
3 m 1 m

Train/Validation 
number

5074/1298 3550/717 1428/364

Annotations 
sources fiboa

iFLYTEK 
dataset fiboa Ours

Annotations 
acquisition 

time
July 2024 June 2021 July 2024 June 2024
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acquisition times, various remote sensing images often exhibit signifi
cant spectral shifts, as well as differences in target morphology and 
distribution. Fig. 4 illustrates the distribution differences within the 
cross-scene and cross-sensor datasets based on PCA algorithm. In Fig. 4
(a), it can be observed that in the cross-scene dataset, only the Japan 
dataset overlaps with the Denmark source domain, while the other three 
target domain datasets have substantial spatial distances from the 
Denmark dataset. For the cross-sensor dataset, Fig. 4(b) shows consid
erable overlap between the GF-2 and JiLin-1 datasets; apart from this, 
there are significant spatial distances between all other datasets.

3. Methodology

3.1. Domain adaptation field teacher framework

3.1.1. Problem formulation and framework overview
Traditional deep neural networks (DNNs) excel at associating input 

samples xi ∈ X with labels yi ∈ Y within a specific domain. In the context 
of agricultural field extraction, this often involves using spatial infor
mation and spectral bands as input features to segment agricultural 
field. However, real-world applications often encounter a significant 
challenge: the data used for training the model (source domain, Ds =
{(

xS
i ∈ XS, yS

i ∈ YS
)}n

i=1) may differ significantly from the data encoun
tered in the real-world application (target domain,DT =
{(

xT
i ∈ XT

)}n
i=1). These differences can arise from various factors, 

including variations in sensor types, and even seasonal variations in data 
acquisition time. This mismatch in data distributions, denoted as 
PS(XS) ∕= PT(XT) and QS(YS|XS) ∕= QT(YT|XT), where Ps, PT are marginal 
distribution of source domain and target domain, Qs, QT are conditional 
distribution of source domain and target domain, respectively, can lead 
to a significant degradation in model performance when directly 
applying a model trained on Ds to DT .

To address the aforementioned challenge, a novel model named 
Unsupervised Domain Adaptation Field Teacher-Student network (UDA- 
Field Teacher, UDA-FT) is proposed to extract individual agricultural 
field objects in a target domain using existing agricultural field labels 
from a source domain. The overall architecture of the model is shown in 
Fig. 5. FT consists of two main modules: target-oriented teacher model 
and cross-domain student model. Both the teacher and student model 
adopt the Mask R-CNN network as their base architecture. The teacher 
model is specifically designed to generate high-quality soft pseudo- 
labels for the target domain, while the student model is trained using 

a combination of strongly-augmented labeled source domain data and 
soft pseudo-labeled target domain data.

A two-stage training strategy is employed in UDA-FT. The first stage 
involves a robust pretraining process, where the model is trained on the 
source domain to learn inherent data representations using Mask R-CNN 
network with various strong data augmentation methods. The second 
stage introduces teacher model and student model, facilitating knowl
edge transfer by aligning the feature representations of both the teacher 
and student networks through consistency mutual learning. Unlike the 
fully supervised Mask R-CNN, FT incorporates an adversarial domain 
discriminator to minimize the domain shift between source and target 
domains at the image level and instance level. Additionally, during the 
second stage’s mutual learning process, consistency learning between 
the teacher and student models ensures accurate knowledge transfer. In 
the inference phase, obtaining the final result only requires a single 
forward pass similar to the standard Mask R-CNN.

3.1.2. Mask R-CNN
Mask R-CNN is a two-stage instance segmentation architecture built 

upon the object detection framework Faster R-CNN (Ren et al., 2015). It 
not only performs object detection but also generates high-quality seg
mentation masks for each detected instance. In this study, we employ a 
Mask R-CNN based framework to design an unsupervised domain 
adaptation method for the precise extraction of crop field parcels. Mask 
R-CNN consists of three parts: the backbone network for feature 
extraction, the neck network for feature fusion and the RoI head for task- 
specific output.

The backbone of Mask R-CNN is ResNet101 (He et al., 2016), a deep 
residual network known for its exceptional performance in image 
recognition tasks. The neck component of the Mask R-CNN framework is 
the Feature Pyramid Network (FPN)(Lin et al., 2017), which is inte
grated with the ResNet101 backbone to enhance multi-scale feature 
representation. FPN constructs a feature pyramid by combining low- 
resolution, semantically strong features with high-resolution, semanti
cally weak features. In addition, the detector head comprises multiple 
modules for extracting crucial information and generating task-specific 
objectives. First, the Region Proposal Network (RPN) generates candi
date object proposals by analyzing the multi-scale feature map from 
FPN. These proposals are then refined and filtered by RoI head, resulting 
in a manageable set of Regions of Interest (RoIs). To ensure accurate 
spatial alignment, RoI Align is employed, addressing quantization 
misalignment issues inherent in Faster R-CNN’s RoI pooling. The box 
head then processes these aligned RoIs to predict object categories and 

Fig. 4. Cross-scene dataset and cross-sensor distribution visualization. Component 1 is the first PCA component, and Component2 is the second PCA component. (a) 
Cross-scene dataset distribution visualization. (b) cross-sensor distribution visualization.
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bounding box offsets. During the training phase, the mask head consists 
of fully convolutional network (FCN) (Long et al., 2025) that generates a 
binary mask for each RoI which is from the RPN by RoI Align in parallel. 
This parallel processing enables the framework to simultaneously pre
dict object classes, bounding boxes, and segmentation masks. But in 
inference stage, the mask head generates a binary mask for each RoI 
from the box head output.

3.1.3. Consistency mutual learning module
Mutual learning is widely applied in knowledge distillation and semi- 

supervised learning. As shown in Fig. 6, the proposed consistency 
mutual learning module employs the teacher-student architecture. 
While both the teacher and student models employ the Mask R-CNN 
architecture, they differ in their parameter update mechanisms. The 
student model updates its parameters using standard gradient descent, 
while the teacher model updates its weights by distilling knowledge 
from the student model through an Exponential Moving Average (EMA) 

method. The EMA is defined as: 

θt = (1 − α)θs +αθt− 1 (1) 

where θt and θt− 1 represent the parameters of the teacher model at the 
current and previous time steps respectively, θs represents the parame
ters of the student model at the current time step, and a represents the 
decay rate of the EMA. In this study, a is set to 0.9996.

In the mutual learning process of teacher-student models, the teacher 
model typically generates pseudo-labels for target domain images to 
facilitate student model learning.

Consequently, the model’s performance is intrinsically linked to the 
quality of these pseudo-labels. In domain adaptive object detection and 
instance segmentation tasks, it is necessary to employ manually set 
confidence thresholds and non-maximum suppression (NMS) to filter 
the object bounding boxes predicted by the teacher model, thereby 
generating “hard” pseudo-labels. This approach has three notable dis
advantages: 1)Pseudo-label quality depends heavily on confidence 
thresholds, with poor choices leading to errors that harm training. 2) 
Low-confidence bounding boxes often provide valuable semantic in
formation and directly eliminating these boxes results in the loss of 
potential supervisory signals. 3) Since the teacher model’s predictions 
often have low confidence scores in the early training stage, a high 
confidence threshold for pseudo-label selection risks discarding valuable 
information, while a low threshold can introduce substantial noise and 
hindering training effectiveness. To address the issues associated with 
hard pseudo-labels, we propose a soft pseudo-labeling approach for 
updating the student model, which eliminates the need for manually set 
confidence thresholds. This method facilitates mutual learning between 
the teacher and student models, specifically focusing on the RPN and RoI 

Fig. 5. The framework of the proposed UDA-Field Teacher (UDA-FT).

Fig. 6. Consistency mutual learning module.
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Head components.
To be specific, after the features output by the FPN are fed into the 

RPN, both the teacher and student models generate coordinate offset 
matrices for bounding box localization and logits vectors for foreground- 
background classification. The RPN mutual learning loss function used 
to update the student model is: 

Lrpn = Lloc
rpn
(
θloc

s
(
A, xstrong

s
)
, θloc

t
(
A, xweak

t
) )

+

Lcls
rpn
(
σ
(
θcls

s
(
A, xstrong

s
) )

, σ
(
θcls

t
(
A, xweak

t
) ) ) (2) 

where Lloc
rpn and Lcls

rpn represent the localization loss and classification loss 
of the RPN, θloc

s and θloc
t represent the parameters of the student and 

teacher models’ localization networks, A denotes the anchors, xstrong
s and 

xweak
t signify strongly and weakly augmented data inputs，and σ denotes 

the sigmoid activation function. In this study, the localization loss Lloc
rpn is 

smooth L1 loss and the classification loss Lcls
rpn is cross-entropy loss.

The output from RPN is fed into RoI Head to generate the bounding 
box feature, categorical feature and segmentation feature. Both the 
teacher and student models have same structure. The RoI Head mutual 
learning loss function used to update the student model is: 

Lroi = Lbox
roi

(
θbox

s
(
ploc

s , xstrong
s

)
, θbox

t
(
ploc

t , xweak
t

) )
+

Lcls
roi
(
σ
(
θclś

s
(
pcls

s , xstrong
s

) )
, σ
(
θclś

t
(
pcls

t , xweak
t

) ) )
+

Lseg
roi
(
σ
(
θseg

s
(
ploc

s , xstrong
s

) )
, σ
(
θseg

t
(
ploc

t , xweak
t

) ) )
(3) 

where Lbox
roi , Lcls

roi and Lseg
roi represent the bounding box localization loss, 

classification loss and segmentation loss of the RoI Head. θbox
s , θclś

s and 
θseg

s represent the parameters of the student models’ bounding box 
localization networks, classification networks and segmentation net
works. Parameters with a subscript ‘t’ denote the corresponding pa
rameters in the teacher model, and ploc

s and pcls
s denote the RPN output. 

Consistent with the loss function employed for RPN mutual learning, the 
loss functions utilized for bounding box localization and classification 
are the smooth L1 loss and cross-entropy loss, respectively. Furthermore, 
the supplementary loss function incorporated into the RoI Head mutual 
learning framework for segmentation purposes also leverages the cross- 
entropy loss.

3.1.4. Image adaptation module & instance adaptation module
In the context of domain adaptation for instance segmentation, a 

significant challenge arises from the fact that annotations are typically 
only available for the source domain. When the teacher model generates 
pseudo labels for target domain images, it relies heavily on knowledge 
acquired from labeled source domain data. This inherent bias can result 
in noisy and perhaps inaccurate pseudo labels for the target domain, 
potentially causing the learning process to deteriorate or collapse. The 

discrepancy between domains exacerbates this issue, leading to a 
degradation in the overall performance of the adaptation framework.

To mitigate this critical challenge, it is essential to narrow the 
domain discrepancy between source and target domains. A particularly 
efficacious strategy to achieve this objective involves the integration of 
adversarial learning techniques into the framework. The adversarial 
learning as a powerful mechanism for aligning the statistical distribu
tions across the two domains. This alignment process effectively di
minishes the domain shift, thereby enhancing the model’s 
generalization capacity. From the perspective of image features and 
target instances, image-level adaptation and instance-level adaptation 
are employed to reduce the shift between the source and target domains.

As illustrated in Fig. 7, image-level adaptation is implemented to 
align multi-scale features in the domain space subsequent to the FPN 
processing. Initially, feature maps of varying resolutions obtained from 
the FPN are downscaled to 1/32 of the original image size through 
average pooling. These downscaled features are then summed together 
to create a composite multi-scale information feature. This fused image 
feature is subsequently fed into a Gradient Reversal Layer (GRL)(Ganin 
and Lempitsky, 2025) for adversarial training, which serves to obfuscate 
inter-domain class distinctions. The mechanism of GRL is depicted in 
Fig. 7. Gf

(
x; θf

)
represents the feature extractor and Gd(x; θd) represents 

the domain classification network, both feature vectors derived from 
source and target domain inputs are passed through Gd(x; θd) to obtain 
domain classification results. To adapt the model parameters trained on 
the source domain to the target domain distribution, we aim to confuse 
the source and target domain distributions during training. This confu
sion makes the discriminator unable to determine whether the predic
tion originates from the source or target domain, effectively maximizing 
the domain classification loss. The domain classification loss can be 
defined as: 

Ldis = − dlogGd
(
Gf

(
x; θf

)
; θd

)
− (1 − d)log

(
1 − Gd

(
Gf

(
x; θf

)
; θd

) )
(4) 

During network training, confusing the source and target domains 
requires maximizing the domain classification loss function, which 
means: 

Ladv = argmaxLdis (5) 

When using gradient optimization methods to search for optimal 
parameters, the domain classifier parameters are updated as follows: 

θd = θd − μ ∂Ldis

∂θd
(6) 

The GRL as defined above is inserted between the feature extractor 
and the domain classifier, when passing through the GRL, the gradient is 
expected to be reversed by multiplying by − λ, which is formally defined 
as: 

Fig. 7. Image adaptation module.
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θf = − λ
∂Ldis

∂θf
(7) 

In this study, the value of λ is set to 1.
The output from the GRL is then fed to a convolutional discriminator 

(ConvDiscriminator) for image-level domain classification. The Con
vDiscriminator consists of four Convolution+ReLU layers, followed by 
an adaptive pooling layer and a flattening operation. Finally, a Linear 
layer is used for domain classification. To facilitate this process, we 
employ a binary encoding scheme for domain categorization: the source 
domain is designated as 0, while the target domain is assigned a value of 
1. The network parameters are then optimized using a binary cross- 
entropy loss function, which effectively quantifies the discrepancy be
tween the predicted and actual domain classifications.

As shown in Fig. 8, instance-level adaptation aims to align the feature 
distributions of specific target instances between the source and target 
domains. It focuses on aligning the features of individual objects in 
images (crop field parcel) to reduce the differences in specific target 
instances across different domains. The output after the boxhead is used 
as the input for instance-level adaptation. Similar to image-level adap
tation, the features are passed through a GRL. These features are then fed 
into a fully connection discriminator (FCDiscriminator) for instance- 
level domain classification. The FCDiscriminator consists of two Line
ar+ReLU layers, followed by a Linear layer for classification. Similarly, 
the source domain label is set to 0 and the target domain label is set to 1 
for training.

3.2. Two-stage training strategy

3.2.1. Stage1: Robust pretraining on source domain
First, we trained a teacher model on the source domain data using a 

robust pre-training strategy. The key to unsupervised domain adaptation 
learning within the teacher-student model paradigm lies in improving 
the quality of target-domain pseudo-labels. During the initial phase of 
mutual learning, the effectiveness of pseudo-labels is predominantly 
influenced by the teacher model’s capacity to generalize beyond its 
training dataset distribution (Xu et al., 2021). To enhance this capa
bility, we employ a suite of comprehensive data transformation tech
niques. These include random resizing of images, random erasing and 
color jitter (Zhong et al., 2020). Such methods serve to diversify the 
input data, encouraging the model to develop more robust and adapt
able feature representations. These techniques alter the distribution of 
the original data, enabling models trained on the source domain to 
achieve superior generalization capabilities.

Moreover, the student model of adversarial training is inherently 
unstable, particularly when a significant discrepancy exists between the 
source and target domain distributions, often leading to training 
collapse. Models trained with robust data augmentation strategies 
demonstrate enhanced generalization, which effectively mitigates the 
occurrence of training collapse. It is noteworthy that the random 
augmentation strategies continuously alter the data distribution, making 
it more challenging for the model to fit. Consequently, if the network in 
the first stage is not initialized with pre-trained weights, it is susceptible 

to early collapse. To avoid this, we initialize the network with weights 
pre-trained on ImageNet.

3.2.2. Stage2: Teacher-student mutual learning
The second stage of training integrates both labeled source domain 

data and unlabeled target domain data in a comprehensive approach. 
Source domain data undergoes strong augmentation before entering the 
student model, while target domain data is subjected to both strong and 
weak augmentations, feed into the student and teacher models respec
tively. While strong data augmentations can enable models to learn 
more generalized knowledge, they often focus on semantic under
standing of the images and seldom consider the difficulties in knowledge 
transfer caused by differences in object morphology during domain 
adaptation.

As the morphological difference is particularly pronounced at 
different field parcel size in cross-scene task and different resolution in 
cross-sensor task, blurring the boundaries of agricultural field often 
leads to inaccurate predictions that hinder the training process. To 
address this, we propose a straightforward yet effective data augmen
tation technique named “CutMatch” (CM) as illustrated in Fig. 9 (a). This 
method involves randomly cropping a section from the target domain 
data (in this study, we used a range size cropping window) and subse
quently resizing it to a larger or smaller scale. After the target domain 
data undergoes “CutMatch” preprocessing, it needs to be further pro
cessed through weak augmentation methods such as random flipping 
and random resizing before being input into the teacher model to 
generate predictions. For the student model, however, the process to 
enhance the capability of consistency learning is different. In addition to 
the same weak augmentation methods applied to the teacher model 
input, the data input to the student model needs to undergo a series of 
strong augmentation steps. These methods include conventional tech
niques such as color jittering and random blurring.

Additionally, inspired by the MIC method(Hoyer et al., 2023), a 
Random LeakyMask (LM) data augmentation strategy was adopted to 
the second stage training. The LM method is illustrated in Fig. 9 (b). This 
methodology employs random masking for partial image occlusion, with 
the distinctive feature of incorporating a pixel “leakage” mechanism. 
This mechanism permits a controlled leak of original pixel information 
through the mask, and provides the model with latent contextual cues. 
Through this approach, the model can more effectively capture local and 
global semantic information, thereby enhancing its perception of the 
surrounding visual environment.

After processing through the backbone and FPN, image adaptation is 
performed between the features of the strongly augmented source 
domain data and the strongly augmented target domain data. Subse
quently, as the data flows through the RPN and RoI Head, consistency 
mutual learning is applied to the features derived from the strongly and 
weakly augmented target domain data. The process continues with 
instance adaptation, conducted on the strongly augmented source and 
target domain boxhead processing. The total loss function for the second 
training stage is: 

Ltotal = Lsup + λ1Limg− dis + λ2Lins− dis + Lrpn + Lroi (8) 

Fig. 8. Instance adaptation module.
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Where Lsup denotes the source domain supervised learning loss, 
Limg− dis denotes the image-level adaptation loss and Lins− dis denotes the 
instance-level adaptation loss. λ1 and λ2 are the hyper-parameters used 
to control the weighting of the corresponding adaptation losses.

This training methodology results in the preservation of the student 
model’s parameters as the definitive training outcome, effectively syn
thesizing domain adaptation techniques with mutual learning strategies 
to enhance the model’s generalization capabilities and target domain 
performance.

4. Experiments

4.1. Implementation details

All models were compiled based on the PyTorch framework. We 
trained all models using two NVIDIA GeForce RTX 3090Ti GPU with 24 
GB of memory. The first stage of training involves conventional super
vised learning on the source domain data. The training parameters and 
protocol are as follows: the maximum number of iterations is set to 
30,000 steps; the initial learning rate is established at 0.02, with a warm- 
up strategy implemented for the first 1000 steps of training. Subse
quently, a step-wise decay strategy is adopted for learning rate adjust
ment. Specifically, at the 25,000th step, the learning rate is reduced to 
0.002. The batch size is fixed at 16 samples. For parameter optimization, 
the Stochastic Gradient Descent (SGD) algorithm is employed.

The second stage of training initializes with the optimal parameters 
obtained from the first stage. The training configuration for this phase is 
as follows: the maximum iteration count is set to 55,000 steps. The 
initial learning rate is established at 0.002, with a warm-up strategy 
implemented for the first 100 steps. Subsequently, a step-wise decay 
strategy is adopted for learning rate adjustment. Specifically, at the 

50,000th step, the learning rate is reduced to 0.0002. The batch size is 
maintained at 16 samples. The SGD algorithm is employed for parameter 
optimization. The total loss function Ltotal is a weighted sum of its 
components. The supervised loss Lsup and the consistency losses Lrpn, Lroi 

are applied with an implicit weight of 1.0, consistent with standard 
practice. Notably, the weight λ1 and λ2 assigned to the domain adapta
tion loss function are set to 0.01. This relatively small value is crucial, as 
excessively large weights for this component can lead to training 
collapse.

4.2. Description of comparative methods

Given the current absence of unsupervised domain adaptation al
gorithms specifically designed for agricultural field instance segmenta
tion, direct comparison with other methods in this domain is not 
feasible. Consequently, we have opted to benchmark our approach 
against several baselines and other research domain SOTA methods. The 
source-only method serves as our primary baseline, which refers to a 
model trained exclusively on the source domain with weakly augmen
tation and directly applied to the target domain without any adversarial 
training or consistency learning mechanisms (He et al., 2017). We also 
introduce the strong augmentation method, which utilizes the stage 1 
strong augmentation techniques for training on the source domain data 
before application to the target domain (Zhong et al., 2020). Addition
ally, the Adaptive Teacher (AT) method (Li et al., 2022), a state-of-the- 
art approach for domain adaptive object detection that employs a 
teacher-student structure serves as another baseline for comparison. To 
evaluate instance segmentation results, this study incorporates a mask 
head branch into the AT method for learning agricultural field masks. In 
addition, the Panoptic Domain Adaptive Mask R-CNN (PDAM) (Liu 
et al., 2020), the first unsupervised domain adaptation framework for 

Fig. 9. CutMatch and LeakyMask. (a) CutMatch method. (b) LeakyMask method.
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instance segmentation, is used as a baseline for comparison too. While 
originally proposed for medical image analysis, PDAM’s generalizable 
architecture allows for its application to our task, maintaining its orig
inal structure. Lastly, the Oracle method, representing results obtained 
by training the model on the target domain under fully supervised 
conditions, serves as an upper bound for performance. This comparison 
serves as a critical baseline to evaluate the effectiveness of our proposed 
unsupervised domain adaptation framework.

4.3. Evaluation metrics

To quantify the model performance, five quantitative object-based 
evaluation metrics including mean average precision at IoU 0.5 to 
0.95 (mAP, we abbreviate it as AP in the table and the text below), mean 
average precision at IoU 0.5 (mAP50, we abbreviate it as AP50 in the table 
and the text below), precision, recall and F1-score were employed. These 
metrics evaluate the model’s ability to correctly identify and segment 
field parcels as objects, considering both their spatial overlap (via IoU) 
and detection confidence. These object-based metrics are widely used in 
instance segmentation tasks, such as the COCO evaluation protocol, and 
particularly suitable for evaluating field parcel extraction in remote 
sensing imagery (Persello et al., 2023; Chen et al., 2023a; Chen et al., 
2023b). While the COCO metric serves as the standard benchmark for 
comparing instance segmentation models, it is primarily designed for 
evaluating raster segmentation, which cannot fully reflect and evaluate 
the effectiveness and advantages of vector-based prediction methods. To 
address this gap, we introduce the polygons and line segments (PoLiS) 
metric, which is designed to assess the differences in both the shape and 
accuracy of polygons (Avbelj et al., 2015). To enable this vector-based 
evaluation, we perform a post-processing step where the raster-based 
instance masks generated by the model are converted into vector poly
gon format using the Suzuki–Abe border-following algorithm (Suzuki, 
1985). Specifically, the soft probability masks are binarized, and the 
object contours are extracted via a standard contour-finding algorithm. 
These boundaries form the vertices of the predicted polygons, which are 
then used to compute PoLiS. This vectorization step ensures compati
bility with shape-sensitive metrics and supports further GIS-based 
analysis. For the large-scale experiment, we additionally employed 
two object-based metrics Sunder and Sover, to quantify the degree of 
under-segmentation and over-segmentation of extracted field parcels, 
respectively (Yan and Roy, 2014; Persello and Bruzzone, 2010). Sunder 

measures the rate at which an extracted field parcel is larger than the 
corresponding ground truth parcel (under-segmentation), while Sover 

measures the rate at which an extracted field parcel is smaller than the 
ground truth parcel (over-segmentation). The formulas for calculating 
these metrics are as follows: 

mAP =
1
c
∑c

i=1

(∫ 1

0
Pi(R)dR

)

(9) 

precision =
TP

TP + FP
(10) 

recall =
TP

TP + FN
(11) 

F1 =
2TP

2TP + FP + FN
(12) 
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1
2q
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)
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where P and R in formula (9) represent the Precision and Recall, c 
represents the number of classes (here the value of c is 1), TP represents 
the number of true positive samples, FN represents the number of false 
negative samples, and FP represents the number of false positive sam
ples. Formula (10), (11) and (12) present the conventional instance 
segmentation evaluation metrics: Precision, Recall, and F1-score. For
mula (13) presents PoLiS metric. In this equation, Po is the predicted 
polygon and GTo is the ground-truth polygon. The variables pj and gk 
represent the vertices of Po and GTo, respectively, while q and r are their 
corresponding total number of vertices. The metric computes a sym
metric distance by summing the minimum distances from each vertex pj 
to the boundary of the ground-truth polygon (GTo), normalized by a 
factor of (1/2q), and adding this to the sum of minimum distances from 
each vertex gk to the boundary of the predicted polygon (Po), which is 
normalized by (1/2r). Pj and Ai in formula (14) and (15) represent the 
prediction field parcel and corresponding annotation. When Pj intersects 
with multiple fields in Ai, or Ai intersects with multiple fields in Pj, the 
values of Eq. (14) and (15) are determined by summing the S values for 
each intersecting field, weighted by their respective intersection areas. 
These metrics yield percentage values between 0 and 1, with the 
exception of PoLiS. To enhance the interpretability of the PoLiS metric, 
we convert the pixel-based spatial distances into actual ground dis
tances, measured in meters.

5. Results

5.1. Benchmark comparison on cross-scene dataset

5.1.1. Results on the Denmark-Japan dataset
Fig. 10 presents the visualization results of several methods in the 

Denmark-Japan experiment. Overall, almost all methods identified most 
of agricultural field parcels in the target domain. This suggests a rela
tively small domain gap between the Japan dataset and Denmark 
dataset, indicating that features learned from the Denmark dataset 
transfer relatively well to the Japan target domain. This is consistent 
with the observation from Fig. 4 that the feature distributions of the 
Denmark dataset and Japan dataset are the most spatial distance similar. 
A closer examination of the visualized results reveals that the UDA-FT 
method exhibits the fewest false negatives, demonstrating its best 
overall performance. This is particularly evident for small and densely 
packed agricultural field parcels, where UDA-FT can identify more tar
gets and exhibits the lowest number of missed detections. Specifically, 
the results in the second row highlighted by yellow squares of the Fig. 10
clearly show that only UDA-FT can detect almost all the small agricul
tural field parcels completely. The source-only method performs poorly 
in the second and third rows of the Fig. 10, often merging many small 
farmland parcels into a single large block. The strong-augmentation 
method performs better than the source-only method but still missed a 
lot of small targets. AT and PDAM can effectively identify larger agri
cultural field parcels and recognize some small ones, but they still miss a 
considerable number of small parcels, resulting in a worse overall per
formance than that of UDA-FT.

Table 3 presents a quantitative comparison of all models’ perfor
mance on the Japan test dataset. The results highlight that the UDA-FT 
method consistently outperforms other approaches across all evaluation 
metrics, achieving the highest scores in AP, AP50, Precision, Recall, and 
F1-score. This performance demonstrates the effectiveness of UDA-FT in 
mitigating the domain shift and accurately identifying and delineating 
agricultural field parcels. Notably, while all models exhibit satisfying 
performance on AP50, a metric often used to assess object detection 
capabilities, the F1-score, which considers both Precision and Recall, 
reveals a more substantial performance gap. This difference emphasizes 
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the superior ability of UDA-FT to not only detect field parcel instances 
but also achieve precise segmentation. Specifically, UDA-FT achieves a 
Precision of approximately 0.71 and a Recall of 0.72, indicating its 
proficiency in both minimizing false positives and false negatives. These 
quantitative results align with the visual results depicted in Fig. 10. In 
addition, the PoLiS metric further demonstrates UDA-FT’s advantage in 
polygon shape accuracy. UDA-FT achieves a PoLiS of only 10.17 m, 
which is about 24.4 % and 28.5 % lower than PDAM (13.43 m) and AT 
(14.21 m), respectively. This highlights UDA-FT’s ability to more 
accurately reconstruct real field boundaries.

5.1.2. Results on the Denmark-China dataset
Compared to the Japan dataset, the China dataset has a more com

plex background, with less uniform agricultural field parcels. Fig. 4 also 
shows that the China dataset’s feature distribution is further from the 
Denmark dataset than the Japan dataset’s, presenting significant chal
lenges for model learning. As shown in Fig. 11, the source-only method 
suffers from a significant number of missed detections, particularly in 
the images shown in the second and third rows. While the strong- 
augmentation method demonstrates some improvement, it still ex
hibits a considerable number of false negatives. Although AT and PDAM 
can identify most agricultural field parcel instances, they are prone to 

misclassification errors. For example, in the top-right corner of the 
image in the third row, highlighted by a yellow solid square, both AT 
and PDAM mistakenly classify the river as small field parcels and frag
ment some complete parcels into multiple smaller segments, leading to 
an increased false positive rate. In contrast, the UDA-FT method exhibits 
fewer misclassifications and can accurately identify and delineate entire 
farmland parcels without fragmentation, achieving the best overall 
performance.

Table 4 reveals a noticeable performance decrease of all models 
compared to the Japan dataset results, indicating that the China dataset 
presents a more challenging domain adaptation task. This suggests that 
the diverse and irregular characteristics of agricultural field parcels in 
the China dataset, coupled with a larger domain shift from the source 
dataset, pose difficulties for models to effectively transfer knowledge 
and achieve accurate segmentation. Despite this challenge, UDA-FT 
consistently outperforms other methods, achieving the highest values 
for all metrics, including F1-score approaching 0.70. Moreover, the 
PoLiS metric verifies UDA-FT’s superiority in polygon boundary recon
struction. UDA-FT achieves a PoLiS of 11.31 m, significantly lower than 
PDAM (15.01 m) and AT (16.46 m), with reductions of about 24.8 % and 
31.3 %, indicating its high boundary recognition accuracy in complex 
shapes. In contrast, the source-only and strong-augmentation methods 
struggle to generalize to the target domain, as evidenced by their 
considerably lower F1-scores. While AT and PDAM show improvements 
over the baseline methods, their performance still lags behind UDA-FT 
in terms of overall performance, as reflected by the lower Precision 
and F1-score. Interestingly, PDAM achieves a higher Recall than UDA- 
FT, indicating its ability to identify a larger proportion of field parcel 
instances. However, this comes at the cost of a lower Precision, sug
gesting that PDAM may generate more false positive predictions 
compared to UDA-FT. This observation can be attributed to the trade-off 
between reducing missed detections (false negatives) and minimizing 

Fig. 10. Visualization results of the Denmark-Japan dataset. (a) Imagery. (b) Annotations. (c) Source-only model’s results. (d) Strong-augmentation model’s results. 
(e) AT’s results. (f) PDAM’s results. (g) Our UDA-FT’s results.

Table 3 
Quantitative evaluation results of the Denmark-Japan dataset.

Methods AP AP50 Precision Recall F1 PoLiS (m)

Source-only 0.216 0.337 0.282 0.251 0.266 19.38
Strong-aug 0.238 0.372 0.557 0.430 0.485 14.15

AT 0.255 0.406 0.591 0.502 0.543 14.21
PDAM 0.267 0.427 0.682 0.621 0.650 13.43

UDA-FT 0.284 0.450 0.715 0.722 0.708 10.17
Oracle 0.348 0.524 0.861 0.787 0.822 6.44
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misclassifications (false positives). PDAM’s focus on maximizing Recall 
may lead to the inclusion of more background objects or the fragmen
tation of parcels, resulting in a higher number of false positive pre
dictions. In contrast, UDA-FT achieves a better balance between 
Precision and Recall, demonstrating its ability to minimizing both 
missed detections and misclassifications. This balance contributes to 
UDA-FT’s superior overall performance, as evidenced by its higher F1- 
score.

5.1.3. Results on the Denmark-Cambodia dataset
The Cambodia dataset exhibits significant differences in the shape 

and size distribution of agricultural field parcels compared to the 
Denmark dataset. Field parcels in Cambodia tend to be small and 
densely packed, posing considerable challenges for model learning. As 
shown in Fig. 12, the source-only has a high number of missed de
tections, particularly in the first three rows of images where the 
boundaries between parcels are unclear (highlighted by a yellow solid 
square in the figure) with almost no parcels detected. The strong- 
augmentation method demonstrates notable improvement over the 
source-only method, but still suffers from a significant number of missed 
detections and a tendency to merge multiple small parcels into single 
large blocks. The AT method can identify most farmland instances but 

still exhibits missed detections and merges small parcels. The PDAM 
method detects more detailed parcel objects with fewer mis
classifications but still experiences some missed detections. In contrast, 
the UDA-FT method can comprehensively detect most parcels and 
avoids merging small parcels into larger blocks, achieving the best 
overall performance.

From Table 5, it can be found that the performance of source-only 
method does not compare with results obtained on the previous data
sets, indicating that the Cambodia dataset presents the more challenging 
domain adaptation scenario. This suggests that the distinct character
istics of Cambodian agricultural field parcels, such as the prevalence of 
small, densely packed parcels and intricate field boundaries, coupled 
with a substantial domain shift from the source data, hinder the models’ 
ability to effectively transfer knowledge and achieve accurate segmen
tation. Despite these challenges, UDA-FT continues to outperform other 
methods, achieving the highest values for all metrics, including an F1- 
score nearing 0.69. Additionally, UDA-FT excels in the PoLiS metric 
with a score of 8.07 m, which is approximately 15.5 % and 14.2 % lower 
than PDAM (9.55 m) and AT (9.41 m), respectively. This indicates the 
improved boundary reconstruction ability of UDA-FT in small and 
densely packed parcels. The source-only and strong-augmentation 
methods, on the other hand, struggle significantly to adapt to the 
target domain, as evidenced by their considerably lower F1-scores, 
especially for the source-only approach. Although AT and PDAM 
demonstrate improvements over the baseline methods, their perfor
mance still falls short of UDA-FT.

5.1.4. Results on the Denmark-Vietnam dataset
Fig. 13 illustrates the results of transferring models trained on the 

Denmark dataset to the Vietnam dataset. Compared to other datasets, 
some images in the Vietnam dataset exhibit blurred field parcel 
boundaries, as exemplified in the first row of images. Furthermore, the 

Fig. 11. Visualization results of the Denmark-China dataset. (a) Imagery. (b) Annotations. (c) Source-only model’s results. (d) Strong-augmentation model’s results. 
(e) AT’s results. (f) PDAM’s results. (g) Our UDA-FT’s results.

Table 4 
Quantitative evaluation results of the Denmark-China dataset.

Methods AP AP50 Precision Recall F1 PoLiS (m)

Source-only 0.124 0.232 0.217 0.141 0.171 22.53
Strong-aug 0.179 0.289 0.372 0.288 0.325 18.72

AT 0.189 0.313 0.484 0.529 0.505 16.46
PDAM 0.200 0.342 0.531 0.695 0.602 15.01

UDA-FT 0.227 0.373 0.698 0.683 0.690 11.31
Oracle 0.305 0.451 0.812 0.775 0.793 6.95
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Vietnam dataset contains a large number of elongated and densely 
packed parcels, a characteristic that differs significantly from the parcel 
distribution in the Denmark dataset. This observation is corroborated by 
Fig. 4, which shows that the Vietnam dataset’s feature distribution is the 
furthest from that of the Denmark dataset. Consequently, the Vietnam 
dataset presents the most challenging domain adaptation scenario 
among all the datasets considered. As shown in the highlighted squares, 
the source-only method performs poorly, exhibiting a high number of 
misclassifications and missed detections. The strong-augmentation 
method demonstrates significant improvement over the source-only 
approach, suggesting that diverse data augmentation techniques 
enable the model to learn out-of-distribution features. The AT and 
PDAM methods outperform the first two methods considerably, but still 
suffer missed detections and a tendency to merge multiple small parcels 
into single large blocks. While the UDA-FT method also experiences 
some missed detections and misclassifications, it still outperforms other 
methods.

From Table 6, it is evident that the source-only method exhibits poor 
performance on the Denmark-Vietnam dataset, with an F1-score of only 
0.056, which is considerably lower than the performance on other 
datasets. This indicates that the Vietnam dataset presents a particularly 
challenging domain adaptation scenario. The substantial domain shift 

between the source and target domains, along with the specific char
acteristics of Vietnamese agricultural fields, likely contribute to the 
difficulties in transferring knowledge effectively. Despite these chal
lenges, UDA-FT demonstrates notable improvements, achieving the 
highest F1-score of 0.606 and outperforming all other methods. This 
suggests that UDA-FT is the most effective in adapting to the target 
domain, likely due to its ability to better generalize across the diverse 
and complex features of the Vietnamese fields. The PoLiS metric further 
confirms UDA-FT’s robustness in shape preservation, with a score of 
13.83 m—lower than PDAM (15.80 m) and AT (16.67 m) by 12.5 %– 
17.1 %—demonstrating better boundary fitting even on the most chal
lenging dataset. The source-only and strong-augmentation methods 
continue to struggle, with strong-aug only showing moderate improve
ments, as reflected in their lower F1-scores. While AT and PDAM show 
some progress over the baseline methods, they still fall short of UDA-FT, 
which remains the best performing method on this dataset.

5.2. Benchmark comparison on the cross-sensor datasets

5.2.1. Results on the JiLin-1-Esri imagery dataset
Fig. 14 presents the experimental results on the JiLin-1-Esri Imagery 

dataset. It shows that directly transferring a model trained on the source 
domain JiLin-1 imagery to the Esri Imagery yields poor performance, 
characterized by a large number of misclassifications and missed de
tections. High-resolution images typically exhibit sharp and well- 
defined agricultural field parcel boundaries, whereas lower-resolution 
images often display blurred and compact boundaries. In this scenario, 
the source-only method performs poorly, while the strong augmentation 
approach shows a remarkable improvement compared to using only 
source data. However, limitations still exist. AT and PDAM demonstrate 
substantial enhancements over the first two methods, detecting more 
agricultural field parcels. However, they still suffer from missed de
tections and tend to merge multiple small parcels into single large 

Fig. 12. Visualization results of the Denmark-Cambodia dataset. (a) Imagery. (b) Annotations. (c) Source-only model’s results. (d) Strong-augmentation model’s 
results. (e) AT’s results. (f) PDAM’s results. (g) Our UDA-FT’s results.

Table 5 
Quantitative evaluation results of the Denmark-Cambodia dataset.

Methods AP AP50 Precision Recall F1 PoLiS (m)

Source-only 0.073 0.018 0.202 0.075 0.109 14.97
Strong-aug 0.131 0.258 0.398 0.311 0.349 12.14

AT 0.187 0.292 0.540 0.478 0.507 9.41
PDAM 0.195 0.322 0.664 0.561 0.608 9.55

UDA-FT 0.219 0.349 0.719 0.659 0.688 8.07
Oracle 0.312 0.443 0.828 0.753 0.789 5.01
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blocks. In contrast, the UDA-FT method significantly outperforms other 
methods, especially in the fourth row of images, highlighted by a yellow 
solid square, where only UDA-FT detects the majority of parcels.

The statistical results presented in Table 7 illustrate a significant 
performance gap between the models evaluated on the JiLin-1-Esri 
dataset. UDA-FT consistently outperforms other methods, achieving 
the highest scores across all metrics, including AP, AP50, Precision, 
Recall, and F1-score. Specifically, UDA-FT attains an AP50 exceeding 
0.32 and an impressive F1-score approaching 0.60, indicating its ability 
to effectively balance precision (minimizing false positives) and recall 
(minimizing false negatives). While some methods, such as PDAM, 
exhibit a marginally higher Precision, UDA-FT’s Recall suggests its 
capability to detect a larger proportion of true field parcel instances. 
Additionally, the PoLiS metric further supports the superiority of UDA- 
FT in boundary precision. The source-only and strong-augmentation 
methods, in contrast, struggle to generalize to the target domain, 
particularly the source-only approach, which suffers from very low 
Precision and Recall, implying a high number of both missed detections 
and misclassifications. Although AT and PDAM demonstrate improve
ments over the baseline methods, their performance still lags behind 
UDA-FT.

5.2.2. Results on the Esri Imagery-JiLin-1 dataset
As depicted in Fig. 15, almost all methods can detect the majority of 

agricultural field parcels, and the source-only model demonstrates bet
ter performance compared to its counterpart in the JiLin-1-Esri Imagery 
experiment. This suggests that transferring knowledge learned from 
lower-resolution data to a higher-resolution domain is generally more 
feasible. Nevertheless, a closer examination reveals that the UDA-FT 
method exhibits the fewest missed detections and misclassifications, 
showcasing its superior overall performance. The source-only method 
suffers from a considerable number of missed detections, while the 
strong augmentation approach, despite having relatively fewer missed 
detections, exhibits some misclassifications. Although AT and PDAM 
detect more targets compared to the source-only and strong augmen
tation methods, they also experience misclassifications. For instance, the 
highlighted region in the third row shows that all methods except for 
source-only and UDA-FT incorrectly identify the central area as agri
cultural field parcels. Overall, UDA-FT achieves the best performance in 
terms of minimizing both missed detections and misclassifications, 
resulting in high object integrity.

Table 8 presents the quantitative evaluation results for the Esri 
Imagery-JiLin-1 dataset, a relatively easier cross-sensor domain adap
tation scenario. UDA-FT consistently achieves the highest performance 
across all metrics, including a notable AP50 exceeding 0.42 and an F1- 
score approaching 0.72. This highlights its effectiveness in transferring 
knowledge from lower to higher resolution. While some methods like 
PDAM achieve a marginally higher Recall, UDA-FT maintains a superior 
balance between Precision and Recall, minimizing both false positives 
and false negatives, resulting in the highest F1-score. Meanwhile, the 
PoLiS metric also reflects shape reconstruction performance under cross- 
resolution transfer. UDA-FT achieved a PoLiS of 6.20 m, outperforming 
PDAM (7.34 m) and AT (7.96 m) by 15.5 % and 22.1 %, respectively, 
indicating robust boundary fitting even with significant resolution 
shifts. Performance of the source-only and strong-augmentation 

Fig. 13. Visualization results of the Denmark-Vietnam dataset. (a) Imagery. (b) Annotations. (c) Source-only model’s results. (d) Strong-augmentation model’s 
results. (e) AT’s results. (f) PDAM’s results. (g) Our UDA-FT’s results.

Table 6 
Quantitative evaluation results of the Denmark-Vietnam dataset.

Methods AP AP50 Precision Recall F1 PoLiS (m)

Source-only 0.051 0.015 0.113 0.037 0.056 21.82
Strong-aug 0.128 0.210 0.320 0.405 0.358 17.98

AT 0.155 0.254 0.547 0.420 0.475 16.67
PDAM 0.173 0.289 0.521 0.479 0.499 15.80

UDA-FT 0.192 0.337 0.626 0.587 0.606 13.83
Oracle 0.245 0.392 0.762 0.684 0.721 6.64
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methods improved compared with that in the case of experiments on the 
JiLin-1-Esri Imagery dataset, but still lag behind UDA-FT, especially in 
terms of Precision. AT and PDAM show improvements over the baselines 
but their overall performance, as indicated by the F1-score, remains 
lower than UDA-FT.

5.2.3. Results on the PlanetScope-Esri Imagery dataset
Because the PlanetScope dataset has the lowest resolution among all 

datasets involved in the comparison, transferring knowledge learned 
from the PlanetScope dataset to the Esri Imagery dataset is intuitively 
more challenging than transferring from the JiLin-1 dataset to the Esri 
Imagery dataset. Fig. 16 displays the results of transferring from the 
PlanetScope dataset to the Esri Imagery dataset. It can be observed that 
the predictions of all models tend to be fragmented and favor small 
agricultural field parcels, particularly for the source-only model. This is 
because field parcels in the low-resolution PlanetScope dataset are 
generally small in shape, leading the models to prioritize predicting 
small and fragmented parcels when transferred to the high-resolution 
Esri Imagery dataset. As highlighted in the squares, the UDA-FT 
method exhibits the fewest missed detections and misclassifications, 
demonstrating its superior overall performance. The source-only 
method suffers from a considerable number of missed detections and 

misclassifications, while the strong augmentation approach shows some 
improvement in terms of missed detections but still exhibits numerous 
omissions. Although AT and PDAM detect more targets compared to the 
source-only and strong-augmentation methods, they also experience 
misclassifications and over-segmentation.

Table 9 presents the quantitative results on the PlanetScope dataset 
to Esri Imagery dataset. UDA-FT consistently outperforms other methods 
across all evaluation metrics, achieving the highest AP, AP50, Recall, and 
F1-score, although its Precision is marginally lower than that of PDAM 
method. Specifically, UDA-FT achieves an AP50 approaching 0.30 and an 
F1-score nearing 0.58, demonstrating its ability to effectively balance 
the trade-off between minimizing false positives (misclassifications) and 
false negatives (missed detections). While PDAM exhibits a slightly 
higher Precision, potentially indicating its ability to minimize mis
classifications more effectively, UDA-FT’s superior Recall suggests its 
capability to detect a larger proportion of true positive instances, which 
is crucial in this challenging scenario with potentially many small and 
fragmented parcels. In addition, the PoLiS metric confirms UDA-FT’s 
shape reconstruction capability, achieving a PoLiS of 12.70 m, better 
than PDAM (13.66 m) and comparable to AT (12.15 m). The source-only 
method, as expected, performs poorly in this challenging scenario, 
particularly struggling with low Precision, implying a high number of 
misclassifications. Although AT and PDAM show improvements over the 
baseline methods, their overall performance, especially in terms of F1- 
score, still lags behind UDA-FT, emphasizing the importance of effec
tively addressing domain discrepancies and enabling precise feature 
alignment for successful cross-resolution domain adaptation.

5.2.4. Results on the Esri Imagery-PlanetScope dataset
Fig. 17 presents the experimental results on the Esri Imagery- 

PlanetScope dataset. It shows that the source-only method performs 
poorly, exhibiting a high number of misclassifications and missed 

Fig. 14. Visualization results of the JinLin-1-Esri Imagery dataset. (a) Imagery. (b) Annotations. (c) Source-only model’s results. (d) Strong-augmentation model’s 
results. (e) AT’s results. (f) PDAM’s results. (g) Our UDA-FT’s results.

Table 7 
Quantitative evaluation results of the JiLin-1-Esri Imagery dataset.

Methods AP AP50 Precision Recall F1 PoLiS (m)

Source-only 0.043 0.125 0.091 0.022 0.035 17.93
Strong-aug 0.120 0.198 0.287 0.234 0.258 10.85

AT 0.148 0.236 0.411 0.357 0.382 10.03
PDAM 0.151 0.257 0.481 0.413 0.444 11.14

UDA-FT 0.194 0.321 0.575 0.601 0.588 9.38
Oracle 0.348 0.524 0.861 0.787 0.822 6.44
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detections. The strong-augmentation method shows a remarkable 
improvement over using only source data, detecting a larger number of 
targets. However, it tends to overlook fine-grained boundaries, leading 
to the merging of multiple small parcels into single large blocks. AT and 
PDAM demonstrate substantial enhancements over the first two 
methods, identifying more small targets. Nevertheless, they still suffer 
from missed detections and struggle to segment densely packed agri
cultural field parcels. In contrast, the UDA-FT method significantly 
outperforms other methods, especially in the highlighted areas in the 
third and fourth rows of images where only UDA-FT detects the majority 
of field parcels and can relatively accurately identify individual small 
parcels.

Table 10 presents the quantitative evaluation results on the Esri 
Imagery-Planet dataset, a challenging cross-sensor domain adaptation 
scenario involving transferring knowledge from higher to lower reso
lution imagery. UDA-FT consistently outperforms other methods, 
achieving the highest AP, AP50, Precision, Recall and F1-score, demon
strating its effectiveness in handling this complex domain shift. Specif
ically, UDA-FT achieves an AP50 exceeding 0.23 and an F1-score 
approaching 0.54, indicating a superior ability to accurately detect 
and delineate farmland parcels while minimizing both false positives 
(misclassifications) and false negatives (missed detections). While 

PDAM exhibits a marginally higher Recall, suggesting a potential for 
capturing a larger proportion of true positive instances, UDA-FT main
tains a superior balance between Precision and Recall, resulting in the 
highest F1-score. This balance is crucial in this challenging scenario, as it 
implies a better ability to minimize both types of errors (missed de
tections and misclassifications). The low value of PoLiS metric further 
illustrates UDA-FT’s ability to preserve shape under low resolution. The 
source-only and strong-augmentation methods struggle significantly in 
this cross-resolution setting, exhibiting very low Precision and F1- 
scores, indicating a high number of both missed detections and mis
classifications. Although AT and PDAM demonstrate improvements over 
the baseline methods, their overall performance, as reflected by the F1- 
score, still lags behind UDA-FT, emphasizing the efficacy of the proposed 
framework in achieving robust and accurate segmentation results even 
when transferring from higher to lower resolution imagery.

5.3. Large-scale experiments results

To verify the transferability and practicality of UDA-FT across 
diverse scenes and sensors at a large regional scale, we designed two 
large-scale experiments specifically addressing these two situations. For 
the cross-scene scenario, we trained UDA-FT on the Denmark-Japan 
dataset and randomly selected a large agricultural area in Japan from 
the Esri Imagery dataset for inference, predicting individual farmland 
parcels. Fig. 18a shows the large-scale distribution map of farmland 
parcels in the test area, while Fig. 18b and c display zoomed-in views of 
two selected smaller regions. The prediction results are the raw output of 
the model without any post-processing. From a large-scale perspective, 
the distribution of agricultural field parcel boundaries aligns well with 
the agricultural areas observed in the satellite imagery. At a smaller 
scale, even in densely packed farmland areas, UDA-FT can effectively 
identify and predict almost all agricultural field parcels without any 
training samples from the target domain.

Fig. 15. Visualization results of the Esri Imagery-JinLin-1 dataset. (a) Imagery. (b) Annotations. (c) Source-only model’s results. (d) Strong-augmentation model’s 
results. (e) AT’s results. (f) PDAM’s results. (g) Our UDA-FT’s results.

Table 8 
Quantitative evaluation results of the Esri Imagery-JiLin-1 dataset.

Methods AP AP50 Precision Recall F1 PoLiS (m)

Source-only 0.168 0.258 0.463 0.357 0.403 11.35
Strong-aug 0.204 0.322 0.511 0.482 0.496 9.21

AT 0.237 0.363 0.599 0.613 0.606 7.96
PDAM 0.257 0.393 0.586 0.629 0.607 7.34

UDA-FT 0.272 0.424 0.742 0.698 0.719 6.20
Oracle 0.351 0.551 0.887 0.800 0.841 1.80
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Fig. 19 shows the large-scale distribution of predicted agricultural 
field parcels in the cross-sensor scenario. Specifically, we trained UDA- 
FT on the Esri Imagery-GF-2 dataset and randomly selected a large 
agricultural area in China from the GF-2 image for inference. Fig. 19(a) 
displays the large-scale distribution map of agricultural field parcels 
with GF-2 image in the test area, while Fig. 19b and c provide zoomed-in 
views of two selected smaller regions. The prediction results are the raw 
output of the model also without any post-processing. The zoomed-in 
results demonstrate that even without GF-2 ground truth, UDA-FT can 
still effectively align the predicted agricultural field parcel boundaries 
with the agricultural areas observed in the GF-2 image, especially in 
regions with densely packed agricultural field parcels.

Table 11 presents the quantitative evaluation results for the 
Denmark-Japan and Esri Imagery-GF-2 datasets. The improved perfor
mance in the Esri Imagery-GF-2 dataset can be attributed to the higher 
spatial resolution of GF-2 imagery (better than 1 m) compared to the 1.5 
m resolution of Esri Imagery used in the Denmark-Japan dataset, which 
likely enhances the model’s ability to capture fine-scale field bound
aries. Additionally, the lower Sunder and Sover values in the Esri Imagery- 
GF-2 dataset indicate better segmentation quality, with reduced under- 
and over-segmentation, consistent with the higher Precision and Recall 
values. These results further confirm UDA-FT’s robustness and 

transferability across diverse scenes and sensors at a large regional scale.

5.4. Ablation study

To thoroughly evaluate the contributions of different components in 
our UDA-FT, we conducted a series of ablation experiments. These ex
periments include the image and instance adaptation, consistency 
mutual learning, and several data augmentation methods. Each experi
ment demonstrates the impact of these components on the overall per
formance of the model.

Table 12 demonstrates the effectiveness of the three above modules 
on UDA-FT. The first row shows the results of directly transferring the 
model trained with supervision on the source domain with weak- 
augmentation to the target domain. The second row displays the 
model’s performance after applying strong data augmentation in stage 1 
training. We can observe a significant improvement in the model’s 
performance across both Denmark-Cambodia and PlanetScope-Esri Im
agery datasets, with increases in AP50 of 0.071 and 0.069 respectively. 
The third and fourth rows show the results after adding the MIC (Hoyer 
et al., 2023) and our LM methods respectively. We can see that there is a 
considerable improvement in accuracy across both datasets for both 
methods. The MIC module increases AP50 by 0.011 and 0.007 for the 
Denmark-Cambodia dataset and PlanetScope-Esri Imagery dataset 
respectively. The LM methods, however, demonstrates superior perfor
mance, further improving AP50 by 0.015 and 0.013 respectively when 
compared with the strong augmentation baseline. This comparison 
clearly highlights the effectiveness of the LM method, which out
performs the MIC module in enhancing the model’s contextual under
standing capabilities. The fifth row shows the results after adding our 
CM method. We can observe a substantial improvement in the model’s 
performance, with increases in AP50 of 0.027 and 0.022 respectively. 
This significant enhancement is further illustrated in Fig. 20, which 
provides a visual comparison of the model’s output with and without the 

Fig. 16. Visualization results of the PlanetScope-Esri Imagery dataset. (a) Imagery. (b) Annotations. (c) Source-only model’s results. (d) Strong-augmentation 
model’s results. (e) AT’s results. (f) PDAM’s results. (g) Our UDA-FT’s results.

Table 9 
Quantitative evaluation results of the PlanetScope-Esri Imagery dataset.

Methods AP AP50 Precision Recall F1 PoLiS (m)

Source-only 0.088 0.150 0.196 0.283 0.231 18.52
Strong-aug 0.140 0.221 0.387 0.439 0.411 15.21

AT 0.148 0.244 0.498 0.476 0.487 12.15
PDAM 0.167 0.272 0.562 0.523 0.542 13.66

UDA-FT 0.182 0.297 0.557 0.589 0.573 12.70
Oracle 0.348 0.524 0.861 0.787 0.822 7.16
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CM module. The white boxes in Fig. 20 highlight specific areas where 
the CM module demonstrates its effectiveness. The sixth row displays 
the performance after incorporating the IA module. This addition im
proves the AP50 by 0.022 and 0.016 respectively. The last row demon
strates the results after adding the CML module, which further improves 
the AP50 by 0.027 and 0.025 respectively. It is evident that strong data 
augmentation in stage 1 and CML module in stage 2 provides the most 
significant boost to the model’s performance, followed by CM method. 
The MIC, LM, and IA modules also contribute to the improvement, albeit 
to a lesser extent. This observation underscores the critical importance 
of enabling the model to learn from out-of-distribution data.

The substantial improvement from strong data augmentation in 
stage 1 suggests that exposing the model to a wider range of data vari
ations during training enhances its ability to generalize across different 
domains. This is particularly crucial in the context of agricultural field 
parcels segmentation, where variations in imaging conditions, seasonal 
changes, and regional differences can significantly alter the appearance 
of agricultural fields. The contrasting contributions of the LM and MIC 
methods suggest that leaking some information to the mask is more 
beneficial for learning and understanding spatial context. In other 
words, providing the model with some guidance regarding the target 
object’s location within the masked region proves more effective than 

completely masking it out. Furthermore, the significant improvement 
observed with the CM method highlights the necessity of further data 
augmentation specifically targeting size discrepancies between source 
and target domains. This approach encourages the reduction of 
morphological distribution differences between the source and target 
domains, thereby enhancing the model’s ability to generalize across 
domains with varying agricultural field sizes. The contributions of the IA 
module underscore the importance of adversarial domain adaptation in 
mitigating the shift between different domains. By performing adver
sarial learning at both the image level and instance level, the IA module 
encourages the target domain data to align more closely with the source 
domain data in a high-dimensional feature space. This alignment further 
reduces the discrepancy between the two domains, contributing to the 
model’s improved performance on the target domain. The notable 
contribution of CML module further reinforces the model’s robustness to 
domain shifts. By encouraging consistent predictions across different 
augmented versions of the same input, this method helps the model to 
focus on invariant features that are likely to be relevant across domains.

6. Discussion

6.1. Source-target domain shift and alignment

A critical challenge in unsupervised domain adaptation for agricul
tural field instance segmentation is addressing the domain shift between 
source and target datasets. As shown in Fig. 21, our experiments with 
cross-scene and cross-sensor datasets transfers highlight the multifac
eted nature of this shift. In the cross-scene scenario, we observed sig
nificant disparities in agricultural field parcel size, arrangement, color, 
and texture, reflecting the diverse agricultural practices and environ
mental conditions. In cross-sensor experiments, variations in resolution, 
color balance, and viewing angles of different sensors also pose 

Fig. 17. Visualization results of the Esri Imagery-PlanetScope dataset. (a) Imagery. (b) Annotations. (c) Source-only model’s results. (d) Strong-augmentation 
model’s results. (e) AT’s results. (f) PDAM’s results. (g) Our UDA-FT’s results.

Table 10 
Quantitative evaluation results of the Esri Imagery-PlanetScope dataset.

Methods AP AP50 Precision Recall F1 PoLiS (m)

Source-only 0.037 0.091 0.106 0.089 0.097 29.18
Strong-aug 0.055 0.125 0.287 0.261 0.273 23.61

AT 0.089 0.157 0.399 0.387 0.393 15.22
PDAM 0.124 0.191 0.432 0.467 0.449 11.54

UDA-FT 0.156 0.232 0.553 0.518 0.535 9.36
Oracle 0.189 0.321 0.761 0.583 0.660 5.43
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challenges for model transfer. UDA-FT’s success in both scenes can be 
attributed to its effective domain alignment strategies. The aligned do
mains after the image adaptation module and instance adaptation 
module are shown in Fig. 22. The adversarial learning component plays 
a crucial role in mitigating the domain shift by aligning the feature 
distributions between the source and target domains. It achieves this by 
training a discriminator network to distinguish between source and 
target features, while simultaneously training the feature extractor to 
fool the discriminator. This minimax game encourages the feature 
extractor to learn domain-invariant representations, effectively mini
mizing the discrepancy between the two domains. Our proposed method 
addresses the challenge of domain adaptation in transfer learning. By 
encouraging the model to learn domain-invariant features, it effectively 
mitigates the negative impact of differing domain distributions. This 
results in a more robust model that generalizes better to the target 
domain without requiring labeled target data.

6.2. Effect of hard pseudo-label & soft pseudo-label

The generation and utilization of pseudo-labels in the teacher- 
student mutual learning process are usually critical in unsupervised 
domain adaptation. Traditional approaches often rely on hard pseudo- 
labels, created by applying confidence thresholds and NMS to the 
teacher model’s predictions. However, hard pseudo-labels in exists 
works are highly sensitive to threshold selection, often leading to false 
positives and negatives that can severely impact training quality. This is 
especially problematic in instance segmentation, where accurate 
detection boxes are crucial for segmentation precision. Moreover, hard 
thresholding discards low-confidence predictions, which, despite their 
uncertainty, often contain valuable semantic information. In this study, 
we implemented a soft pseudo-labeling approach in UDA-FT, elimi
nating the need for manually set confidence thresholds in pseudo-labels 
generation and preserving the full spectrum of the teacher model’s 

predictions. This method retains the probability distribution of the 
model’s output, allowing for an information-rich training signal. As 
shown in Fig. 23, within the red, yellow, and blue boxes, issues such as 
missed detections and incorrect shape recognition occur with hard 
pseudo-labels, whereas soft pseudo-labels help to avoid this problem. 
This indicates that soft pseudo-labels work effectively especially for 
small or irregularly shaped fields where hard thresholding might 
completely miss or misrepresent important features.

6.3. Effect of imagery acquisition timing and band combination

6.3.1. Imagery acquisition timing
The timing of imagery acquisition impacts cross-domain adaptation 

in agricultural remote sensing due to seasonal variations in crop growth 
stages. To minimize temporal variability, the cross-scene dataset used 
Esri Imagery for the Denmark source domain (Denmark-Summer, May 
2016) and the Asian target domain (June–July), both during the 
growing season (see Section 2.2.1). The cross-sensor dataset used JiLin- 
1, GF-2 and PlanetScope imagery (June–July 2023). To investigate this 
impact, we conducted experiments using Sentinel-2 imagery for Japan- 
Summer (JS, July, peak growing season) and Japan-Winter (JW, 
December, post-harvest or dormant season), and used the Denmark- 
Summer Sentinel-2 imagery (DS, July) as source domain. Fig. 25 illus
trates the effect of acquisition timing on cross-domain adaptation. 
Fig. 25(a) shows Sentinel-2 imagery of two locations in JS and JW, 
highlighting seasonal differences—dense vegetation in JS and sparse 
cover in JW; and the results in Fig. 25(c) display UDA-FT can accurately 
capture individual agricultural field parcel despite seasonal variations. 
The model exhibits adaptability across both the summer vegetation 
growing season and the winter sparse vegetation period (bare soil 
phase). Notably, a model trained on source domain data from the 
summer season effectively adapts to winter conditions as well.

As shown in Table 13, quantitative analysis further confirms this 

Fig. 18. Predicted distribution map of the agricultural field parcels with Esri Imagery. (a) Global visualization of study area in Japan. (b) and (c) Examples of local 
extraction results in (a).
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impact. Direct transfer (source-only) from DS to JS achieves an F1-score 
of 0.072, while transfer to JW drops to 0.054, a 25 % gap, due to 
increased domain shift in JW. After applying UDA-FT, the F1-scores 

improve to 0.272 for DS → JS and 0.270 for DS → JW, narrowing the 
gap to just 0.2 %, showcasing UDA-FT’s ability to mitigate temporal 
domain shifts. This improvement is supported by the PCA-based distri
bution analysis in Fig. 24. Fig. 24(a) shows the feature distributions of 
DS, JS, and JW before adaptation exhibit significant separation. DS and 
JS, both from the growing season, show relatively closer clustering due 
to similar vegetative states, while JW, from the non-growing season, is 
markedly distant, reflecting the pronounced domain shift caused by 
sparse vegetation and exposed soil. After applying UDA-FT’s image and 
instance adaptation modules, the feature distributions of DS, JS, and JW 

becoming more compact and overlapping, particularly between DS and 
JW, indicating that UDA-FT effectively reduces the temporal-induced 
domain gap.

Fig. 19. Predicted distribution map of the agricultural field parcels in with GF-2 imagery. (a) Global visualization of study area in China. (b) and (c) Examples of 
local extraction results in (a).

Table 11 
Quantitative evaluation results of the large-scale experiments across two distinct 
regions.

Metric AP AP50 Precision Recall F1 Sunder Sover

Denmark- 
Japan

0.276 0.432 0.696 0.681 0.688 0.157 0.242

Esri 
Imagery- 

GF-2
0.294 0.460 0.782 0.735 0.758 0.125 0.197

Table 12 
Ablation experiments.

Methods Weak Strong* MIC LM CM IA CML APD- > C 50 APP- > E 50

Source-only 
(baseline)

✓ 0.187 0.152
✓ ✓ 0.258 0.221
✓ ✓ ✓ 0.269 0.228
✓ ✓ ✓ 0.273 0.234
✓ ✓ ✓ ✓ 0.300 0.256
✓ ✓ ✓ ✓ ✓ 0.322 0.272
✓ ✓ ✓ ✓ ✓ ✓ 0.349 0.297

Weak represents weak data augmentation, including random scaling and random flipping. Strong* represents strong data augmentation, including color jitter and 
random erase. MIC represents the SOTA data augmentation method in (Hoyer et al., 2023). LM represents the proposed LeakyMask method. CM represents the 
proposed CutMatch method. IA stands for image adaptation and instance adaptation, and CML stands for consistency mutual learning. APD- > C 50represents the 
metric AP50 in Denmark-Cambodia dataset, and APP- > E 50 represents the metric AP50 in Plant-Esri imagery dataset.
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6.3.2. Band combination
In our experiments, we utilized RGB bands to capture the visual 

characteristics of agricultural field parcels, such as color tones, 
morphology, texture, and size, which vary significantly across domains. 
RGB bands provide a straightforward representation of these features, 
making them suitable for unsupervised domain adaptation tasks where 
UDA-FT learns domain-invariant features based on visual appearance. 
To explore the impact of additional spectral information, we compared 
RGB with RGBN bands (including near-infrared, NIR) using Sentinel-2 
imagery, consistent with the data in Section 6.3.1. The experiment 

involved multiple images from the Japan target domain, captured in 
July (summer growing season), with Denmark as the source domain. 
RGBN inputs were constructed by adding the NIR band, which enhances 
vegetation contrast, and false-color composites (NIR, red, green) were 
generated to highlight vegetation (Fig. 26b). 

Table 14 shows that UDA-FT with RGBN bands achieves an AP of 
0.128, AP50 of 0.245, and F1-score of 0.331, outperforming RGB by an 
improvement of 22.9 %, 28.9 %, and 21.7 %, respectively, confirming 
NIR’s role in improving segmentation by better distinguishing vegeta
tion. However, RGBN UDA-FT lags behind the RGBN Oracle (AP: 0.227, 
AP50: 0.319, F1-score: 0.410), indicating spectral domain discrepancies 
as a challenge. Source-only models perform poorly (RGB Source: AP 
0.022, AP50 0.045, F1-score 0.072; RGBN Source: AP 0.031, AP50 0.059, 
F1-score 0.084), underscoring UDA-FT’s adaptation effectiveness. 
Fig. 26 shows RGBN predictions (column e) improve boundary delin
eation in dense regions (e.g., second and third rows), capturing more 
small-scale parcels with fewer over-segmentation errors than RGB 
(column d). However, in complex areas (e.g., second row), RGBN 

Fig. 20. Visualization results of the CutMatch method ablation experiment. (a) Source domain imagery. (b) Target domain imagery. (c) Annotations. (d) Results 
without CutMatch. (e) Results with CutMatch.

Table 13 
Quantitative evaluation results of different seasons on the Japan Target Domain.

Methods DS➔JS DS➔JW JS Oracle JW Oracle JS source JW source

AP 0.105 0.104 0.193 0.189 0.022 0.014
AP50 0.190 0.181 0.272 0.267 0.045 0.026
F1 0.272 0.270 0.361 0.355 0.072 0.054

Fig. 21. The distribution of the different location and different sensor type by T-SNE algorithm. Red points represent the source domain and blue points represent the 
target domain. (a) is the distribution of the cross-scene dataset, (b) is the distribution of the cross-sensor dataset. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
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introduces noise, misclassifying non-agricultural regions, likely due to 
spectral mismatches in NIR between domains. The larger performance 
gap between RGBN UDA-FT and RGBN Oracle (AP: 0.128 vs. 0.227) 
compared to RGB (AP: 0.105 vs. 0.193) supports this. While RGB-based 
predictions may lack precision, they offer greater robustness to spectral 
variations. This trade-off suggests that while RGBN enhances segmen
tation in vegetation-rich areas, future work should explore band-specific 
alignment, such as NIR-focused adversarial learning, to better leverage 
multispectral data.

6.4. Potential applications, computing efficiency and limitations

Our proposed UDA-FT framework directly addresses the challenge of 
the substantial annotation burden of manually digitizing field bound
aries across diverse regions and sensors, thereby unlocking several sig
nificant applications. For data-scarce regions, particularly in developing 
countries, UDA-FT provides a pathway to generate accurate, fine- 
grained crop field maps where creating labeled datasets from scratch 

is often impractical. These maps can serve as a foundational data layer 
for developing field-level crop management systems, guiding precision 
agriculture, and supporting data-driven insurance services. Moreover, 
the UDA-FT framework could be a key component in establishing a 
dynamic, digitized global land parcel system by leveraging existing well- 
annotated regions as source domains to map vast, unlabeled parts of the 
world. Additionally, our method can be transferred to other domains 
with scarce labels, such as building extraction, road extraction, and 
other object detection and classification tasks.

While the proposed two-stage training paradigm is computationally 
intensive, it is crucial to distinguish between the training and inference 
phases. The complex teacher-student architecture and mutual learning 
are employed only during model development. The final deployed 
model for practical application is a standard Mask R-CNN network with 
63 M parameters and achieves an inference speed of 13.5 FPS. There
fore, its parameter counts and runtime efficiency during inference are 
comparable to other state-of-the-art instance segmentation models, 
without the significant overhead of the UDA training framework. This 

Fig. 22. The distribution of the cross-scene dataset and cross-sensor dataset after image adaptation and instance adaptation modules by T-SNE algorithm, based on 
the features from the final layer of the backbone network. Red points represent the source domain and green points represent the target domain. (a) is the distribution 
of the cross-scene dataset, (b) is the distribution of the cross-sensor dataset. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 23. Visualization results of hard pseudo-labels and soft pseudo-labels: (a) original image, (b) crop field annotations, (c) results of hard pseudo-labels, (d) 
visualization results of soft pseudo-labels.
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makes it feasible for large-scale deployment where inference speed is a 
key consideration.

Despite its strong performance, our framework has several limita
tions that offer avenues for future research. Firstly, model performance 
in the target domain is inherently dependent on the quality and 

relevance of the source domain. A significant morphological discrep
ancy between source and target parcels, such as adapting from small, 
square fields to a domain with elongated, narrow fields, can hinder the 
model’s ability to accurately segment complete shapes. Future research 
can attempt to address this issue at the algorithmic level or through data 

Fig. 24. Cross-scene Distribution Visualization of Seasonal Data Using PCA Components. (a) Distribution of Denmark-Summer, Japan-Summer, and Japan-Winter 
before domain adaptation. (b) Distribution of Denmark-Summer, Japan-Summer, and Japan-Winter after domain adaptation.

Fig. 25. Visualization results of the different seasons in Japan. (a) Sentinel-2 imagery of two locations in Japan, with the left two columns showing the same location 
in summer (July, JS) and winter (December, JW), and the right two columns showing another location in summer and winter. (b) Corresponding annotations. (c) 
UDA-FT’s results.
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augmentation. Furthermore, the current framework relies on a single 
source domain for training. Future work could focus on several key 
areas. A viable solution to the morphological discrepancy issue lies in 
broadening the source domain types and enhancing the morphological 
diversity of the training data. Investigating the effectiveness of incor
porating multiple source domains could potentially enhance the model’s 
generalization ability and robustness across various target domains. 
Additionally, improving computational efficiency for large-scale 
deployment through techniques like knowledge distillation or model 
pruning remains a valuable direction.

7. Conclusions

This study presents a novel unsupervised domain adaptation 
approach for agricultural crop field instance segmentation, addressing 
the critical challenge of adapting models across diverse scenes or sensor 
types without the need for target domain labels. Our proposed method, 
UDA-FT, successfully bridges the gap between source and target 

domains, demonstrating significant improvements in segmentation ac
curacy compared to source-only model. Quantitative evaluations 
demonstrate substantial improvements across multiple metrics for both 
the cross-scene and cross-sensor case studies. In the cross-scene case, our 
method achieves notable increases in AP50 and F1-score compared to the 
source-only model across all four regions: Japan (AP50: +0.113, F1- 
score: +0.442), China (AP50: +0.141, F1-score: +0.519), Cambodia 
(AP50: +0.331, F1-score: +0.579) and Vietnam (AP50: +0.322, F1-score: 
+0.550), highlighting its effectiveness in adapting to different 
geographical contexts. In the cross-sensor dataset, our method shows 
significant improvements across all four sensors combinations: JiLin-1 
to Esri Imagery (AP50: +0.196, F1-score: +0.553), Esri Imagery to 
JiLin-1 (AP50: +0.166, F1-score: +0.316), PlanetScope to Esri Imagery 
(AP50: +0.147, F1-score: +0.342), Esri Imagery to PlanetScope (AP50: 
+0.141, F1-score: +0.438), underscoring its adaptability to various 
sensor characteristics. Qualitative analysis through visualizations 
further demonstrates the superiority of UDA-FT over the source-only 
method, particularly in preserving fine-grained details and accurately 
delineating small-scale agricultural field parcels. The effectiveness of 
UDA-FT can be attributed to its innovative integration of strong data 
augmentation, adversarial learning techniques and consistency mutual 
learning strategies. This approach enables the model to learn domain- 
invariant features while maintaining robustness to the inherent vari
abilities in satellite imagery, including differences in resolution, field 
sizes, geographical regions, color, and imaging angles. In conclusion, 
this research contributes a valuable tool to the field of agricultural 
remote sensing, offering a practical solution to the pervasive problem of 
domain shift in satellite imagery analysis. By enabling more accurate 
and generalizable field instance segmentation across diverse regions and 

Fig. 26. Visualization results of UDA-FT with different band combinations in Japan. Here uses a black background to better visualize the extracted agricultural field 
parcel instances. (a) RGB imagery of four locations in Japan, captured in July during the summer growing season. (b) Corresponding false-color composite imagery. 
(c) Ground truth annotations. (d) UDA-FT’s results using RGB bands. (e) UDA-FT’s results using RGBN bands.

Table 14 
Quantitative evaluation results of RGB and RGBN Bands on the Japan Target 
Domain.

Methods RGB 
UDA- 

FT

RGBN 
UDA- 

FT

RGB 
Oracle

RGBN 
Oracle

RGB 
source

RGBN 
source

AP 0.105 0.128 0.193 0.227 0.022 0.031
AP50 0.190 0.245 0.272 0.319 0.045 0.059
F1 0.272 0.331 0.361 0.410 0.072 0.084
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sensor types, our method has the potential to significantly promote 
global agricultural monitoring, resource management, and food security 
efforts.
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