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h i g h l i g h t s g r a p h i c a l a b s t r a c t 

• Two-stage SOC changes in the CONUS 
were strongly associated with changes in 
warming rates. 

• Rising temperatures predominantly co- 
incided with reduced topsoil SOC stock. 

• Soil water content emerged as the 
strongest negative relationship with sub- 
soil SOC dynamics. 

• A threshold effect of warming rates on 
SOC loss was observed at the ecosystem 

scale. 
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a b s t r a c t 

Temporal dynamics in soil organic carbon (SOC) play a crucial role in the global carbon cycle. How warming 
affects SOC change has been widely studied at the site scale, mainly through short-term manipulative experi- 
ments. Decades-long SOC dynamics in ecosystems can be complicated, particularly as real-world warming rates 
varied on decade-scale. However, the lack of long-term repeated observations on whole-profile SOC limits our 
understanding of SOC dynamics across large regions. Herein, we reconstructed 45 years of SOC dynamics (1970–
2014) in topsoil (0–30 cm) and subsoil (30–100 cm) using 10,639 soil profiles from forest and cropland across 
the contiguous United States, and investigated their relations with key dynamic environments (e.g., climate, veg- 
etation and nitrogen). We further examined the spatial pattern of SOC stock changes at a finer scale ( ∼2 km) 
using machine learning techniques. Our results revealed ecosystem-dependent, two-stage changes of SOC stock, 
characterized by continental-scale halts in SOC loss following warming deceleration since the late 1990s. This 
shift led to an overall increase in SOC stock of 1.41 % in forest and 1.14 % in cropland within the top 1-meter 
over 45 years. Temperature was the primary factor related to topsoil SOC losses, whereas soil water content 
may primarily control subsoil SOC change. Notably, a threshold effect of warming rates on SOC loss was identi- 
fied in both topsoil and subsoil. These findings provide new insights into long-term whole-profile SOC dynamics 
at a large scale, offering valuable implications for carbon sequestration to support sustainable development in 
different ecosystems. 
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. Introduction 

The top one meter of the global ice-free land stores approximately
,500 Gt of soil organic carbon (SOC), larger than the combined car-
on storage in the atmosphere and terrestrial vegetation ( Jobbágy and
ackson, 2000 ; Köchy et al., 2015 ). The SOC pool plays an important
ole in the global carbon cycle through carbon exchange with the atmo-
phere. Even minor changes in the SOC pool can significantly impact
tmospheric CO2 levels ( Bossio et al., 2020 ). Over the past few decades,
limate change has emerged as a non-negligible external force affect-
ng SOC dynamics ( Davidson et al., 2000 ; García-Palacios et al., 2021 ).
lthough studies on short-term SOC response to warming have been in-
reasingly carried out, how warming affects decades-long SOC dynam-
cs, a more complex process ( Melillo et al., 2017 ), is still controversial
ver regions due to the limitation of long-term observations, especially
n deep soil layers ( Smith et al., 2020 ; Yang et al., 2022 ). Uncertain-
ies would arise when extrapolating site-level and short-term results to
arger and longer scales ( Luo et al., 2016 ; Hollister, 2024 ). Particularly,
n the real world, temperature changes at decade-scale often exhibit fluc-
uations rather than linear trends ( Marotzke and Forster, 2015 ), thus
lobal warming rates exhibit inconsistency. For instance, previous stud-
es have reported that global warming accelerated after the late 1970s
nd slowed down after the late 1990s ( Zhu et al., 2016 ). Variability in
arming rates may also influence SOC responses by affecting temper-
ture sensitivity of factors related to carbon input and output, such as
egetation activities ( Lambers, 2015 ) and soil moisture ( Naumann et al.,
018 ). Understanding long-term SOC dynamics at different depths and
heir relationships with the changing warming rate and other environ-
ental factors at large-scale will contribute to improving Earth system
odelling for predicting long-term carbon cycle feedbacks to climate

hange and optimizing carbon management strategies. 
Manipulative experiments have been commonly carried out to ob-

erve soil carbon change under warming. The generally reported pos-
tive carbon-climate feedback in surface soil carbon ( Crowther et al.,
016 ) and the more obvious efflux in whole-profile caused by simu-
ated warming has raised concerns about SOC loss under global warm-
ng ( Hicks Pries et al., 2017 ; Zosso et al., 2023 ). However, most current
arming experiments maintain a fixed warming magnitude, such as a

onstant 2 °C or 4 °C rise throughout the experimental period. This de-
ign overlooks the dynamic nature of real-world temperature changes,
eaving uncertainty about how carbon loss might respond when tem-
erature is at a high level after a period of temperature increase but
arming decelerates. In addition, carbon changes in ecosystems are in-
uenced by multiple factors under real environmental conditions (such
s net primary productivity (NPP) and soil water content) ( Ding et al.,
022 ). But most manipulative experiments explore the effects of one fac-
or in isolation from others ( Knorr et al., 2024 ), and are limited to short-
erm duration, rarely exceeding two to three decades ( Melillo et al.,
017 ). 

Repeated sampling has been applied in some regions to assess real-
orld SOC changes at sites or over regions ( Senthilkumar et al., 2009 ;
hu et al., 2020 ). While site-based SOC and other environmental data
re repeatedly collected by ecological stations offering precious insights
nto environment changes, it is insufficient to reflect SOC dynamics
ver a large area because ecological stations representing different back-
round environmental conditions are still spatially sparse. Some large-
cale repeated sampling programs are being conducted, but sampling
requency is always limited due to the high cost of soil sampling and
easurement. For example, the Forest Inventory and Analysis program

 https://research.fs.usda.gov/programs/nfi) collects surface soil data in
orest plots across the United States every 5–10 years in the recent two
ecades ( Hogan et al., 2024 ), and the Land Use/Land Cover Area Frame
urvey (LUCAS) program conducted surface soil surveys across EU mem-
er states in 2009, 2015 and 2018, with 5,722 sample points revisited
wice ( De Rosa et al., 2024 ). However, the frequency and span of exist-
ng sampling programs are insufficient to support a comprehensive un-
2

erstanding of the long-term SOC dynamics. Moreover, these datasets
ainly focus on surface soil, not whole-profile depth. Given that no

ong-term yearly repeated sampling over large spatial scale has been car-
ied out yet, reconstructing SOC dynamics based on existing database of
hole-profile soil measurements can serve as an alternative way to fill

he data gap. 
The contiguous United States (CONUS) has experienced notable tem-

erature trajectory since the 1970s: temperature increases since the
970s and a slowing-down in warming from the late 1990s to the
id-2010s ( US EPA, 2016 ). This two-phase temperature change pro-

ides an ideal natural laboratory to study how SOC stock responds to
hanging warming rates, as well as other factors. We hypothesize that
ontinental-scale SOC stocks may exhibit different stages of responses
o two phases of temperature change, and these responses in human-
ominated ecosystem may differ from natural ecosystem, as well as be-
ween topsoil and subsoil. According to these hypotheses, we utilized
uality-assessed database of whole-profile SOC measurements labeled
ith sampling time spanning over half a century, and reconstructed
OC dynamics of cropland and forest from 1970 to 2014 in the CONUS
sing moving subset window analysis. To identify key drivers of SOC
emporal dynamics, we then analyzed the dominant environmental dy-
amic factors of temporal SOC changes in both topsoil (0–30 cm) and
ubsoil (30–100 cm) under the natural conditions (forest ecosystems)
nd managed conditions (cropland ecosystems). Specifically, we evalu-
ted dynamic drivers representing climate (temperature/precipitation),
oil (soil temperature and water content), vegetation (NPP) and anthro-
ogenic factors (Nitrogen deposition and fertilization). Finally, we pre-
icted the spatial pattern of SOC stock change at 1-meter depth using
 machine-learning-based model. Our analysis aims to answer the fol-
owing two questions: 1) How has SOC stock changed in the CONUS
ince the 1970s, and how has it responded to changing warming rates?
) What are the differences of SOC dynamics and main driving factors
etween topsoil and subsoil in forest and agricultural ecosystems from
970 to 2014? 

. Material and methods 

.1. Soil organic carbon data from 1970 to 2014 

.1.1. Soil profiles collection and harmonization 

We collected the soil organic carbon sample data in the CONUS from
wo open-access soil profile datasets, WoSIS (World Soil Information
ervice) snapshot 2019 ( Batjes et al., 2020 ) and International Soil Car-
on Network version 3 Database (ISCN3) ( Luke et al., 2022 ). The WoSIS
 https://www.isric.org/ ) collates the largest quality-assessed and stan-
ardized database of explicit soil profile observations worldwide. The
SCN is an international scientific community devoted to the advance-
ent of soil carbon research. We selected high-quality profiles of the
ONUS according to the following four criteria, 1) high accuracy of ge-
graphical coordinates, 2) explicit sampling year, 3) the depth of profiles
arger than 1 meter, and 4) in ecosystems without land use transforma-
ions for at least twenty years before the sampling date. Specifically, the
osition error for location is under 1 arc-second ( ∼30 m) in WoSIS and
.0001 arc-degree ( ∼11 m) in ISCN3. In addition, to minimize noises
rom land use change on SOC change, we only remained profiles with
nchanged land use type over the 20 years before sampling ( Qin et al.,
016 ). 

.1.2. SOC stock calculation 

We focused on the mineral soil organic carbon stock, excluding the
itter layers and organic layers of each profile, because of the inconsis-
ent soil sampling rules regarding organic layer in sampling history of
he U.S. For soil data of WoSIS, we extracted the observed soil organic
arbon content (SOCc [g kg-1 ]), bulk density (BD [g cm-3 ]) and coarse
ragments (CRF [%]) of each profile and harmonized to two standard
epths (0–30 cm and 30–100 cm) by using numerical integration based

https://research.fs.usda.gov/programs/nfi
https://www.isric.org/
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Fig. 1. Distribution of collected soil profiles and corresponding climate changes. The spatial distribution of soil profiles in forest (a) and cropland (b). Slopes of 
annual mean maximum temperature (tmax, °C yr − 1 ) (c) and annual total precipitation (prec, 100 mm yr − 1 ) (d) were generated using tmax and prec at locations of 
all the soil profiles based on a moving subset analysis. 
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n a rectangle rule ( Hengl et al., 2017 ), following Eq. (1) : 

1 
𝑏 − 𝑎 

𝑏 

∫
𝑎 
𝑓 ( 𝑥) d 𝑥 ≈ 1 

𝑏 − 𝑎 

𝑛 −1 ∑

𝑖 =0 
𝑓
(
𝑥𝑖 
)
⋅ Δ𝑥𝑖 (1)

here a is the left point of the target depth range (i.e., 0 or 30) and b is
he right point (i.e., 30 or 100), n is the number of depths used, f ( xi ) is
 constant of target soil property at depth ( xi, xi + 1 ) and Δ𝑥 i is the width
f each depth i . If the right point of depth i is larger than b , the Δ𝑥 i is
qual to b - 𝑥 i . 

After scaling the above properties, the soil organic carbon stock
SOCs [Mg C ha-1 ]) was calculated according to the following Eq. (2) : 

OCs = SOCc ⋅ BD ⋅ ( 1 − CRF ) ⋅ Depth ⋅ 0 . 1 (2)

Among these soil profiles, only half have measurements for both
D and CRF. We followed the approach of Wang et al. (2022) by us-

ng a machine learning-based pedo-transfer function to perform impu-
ation for missing data. Specifically, we developed random forest models
ased on all measurements of the respective property (e.g., BD) using
ther observed soil properties including SOC content, clay, sand, and
ilt from the WoSIS as the data input. The accuracy of models is shown
n Table S1 in the Supplementary materials. We also compared our re-
ults of BD with three traditional pedo-transfer functions reviewed by
bdelbaki (2018) . 

The ISCN3, released in December 2015, provides observed soil pro-
les containing SOC stock, BD and SOC content measurements. We har-
3

onized the SOC stock with our stock calculation equations (details in
upplementary materials). After harmonization, the histograms of SOC
tock in topsoil and subsoil from two databases before 2000s show con-
istency with many of profiles sharing the same locations, indicating
inimal impacts of data sources on SOC dynamics (Fig. S1 in the Sup-
lementary materials). Duplicates in ISCN3 matching WoSIS coordinates
ere excluded. In the end, we derived a total of 10,639 observations

8,485 from WoSIS and 2,154 from ISCN3) of topsoil (0–30 cm) organic
arbon stock and subsoil (30–100 cm) organic carbon stock in forest
nd cropland in the CONUS spanning 1970 to 2014 ( Fig. 1 a and b). And
he temperature trends represented by all soil profiles of our dataset ac-
urately reflect the documented shift in warming rates in the CONUS
 Fig. 1 c, d). 

.2. Historic land use 

To distinguish the soil profiles in areas with unchanged land use,
e downloaded the Historic Land Dynamics Assessment + (HILDA + )

rom Winkler et al. (2020) . The HILDA + reconstruction was derived
rom multiple openly available global, continental, regional, and na-
ional LUC datasets, including remote sensing data, reconstructions,
nd statistics. This dataset provides a long-term global annual land use
ecord from 1899 to 2019 at a 1 km spatial resolution, covering six cat-
gories: urban areas, cropland, pasture/rangeland, forest, unmanaged
rass/shrubland, and sparse/no vegetation areas. 
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.3. Climate, topography, soil, vegetation and anthropogenic variables 

To examine the relationships between SOC and environmental vari-
bles, we collected high-resolution variables representing climate, to-
ography, soil, vegetation and anthropogenic factors from published
tudies and open databases. Values from all gridded environmental lay-
rs were extracted for each independent sample point based on its lo-
ation, sampling year, and sampling depth where appropriate. Monthly
ata were integrated into annual data. More details can be seen in Table
2 in the Supplementary materials. 

.3.1. Climate 

The dynamic mean maximum/minimum temperature and total pre-
ipitation at a 60 arc-second resolution (approximately 2 km) were
rom MacDonald et al (2020) . We download climate background con-
ition indices, including high-resolution ( ∼1 km) bioclimatic vari-
ble BIO1 (annual mean temperature) and BIO12 (annual precipita-
ion) from WorldClim ( https://worldclim.org/ ) and aridity index from
omer et al. (2022) . 

.3.2. Topography 

Topography directly influences soil carbon accumulation and redis-
ribution, and indirectly influences micro-climates that support species
iversity and resilience to climate change. We derived elevation and
lope from the USGS 3DEP on the GEE (google earth engine) platform.
e also downloaded topographic diversity (td), physiographic diversity

pd), continuous Heat-Insolation Load Index (chili) on GEE provided by
heobald et al. (2015) . 

.3.3. Soil 

Soil water and temperature reflect the status within soil and directly
nfluence the microbial activities. We collected the dynamic water con-
ent and temperature of topsoil (0–28 cm) and subsoil (28–100 cm) at
.1° by 0.1° resolution from the dataset of ERA5-Land on GEE platform
 Copernicus Climate Change Service, 2019 ). Additionally, soil back-
round condition indices were downloaded or derived, including lithol-
gy (soil parent material) from Theobald et al. (2015) , clay and available
ater content (awc) from gNATSGO ( Soil Survey Staff, 2023 ). 

.3.4. Vegetation 

Vegetation biomass determines the amount of litter (leaves,
ranches, etc.) and root input to the soil, which are important sources
f SOC ( Sun et al., 2021 ). NPP can represent the net accumulation
f vegetation biomass, but the longest NPP observations can only
ate back to the 1980s. We downloaded the dynamic NPP data from
iang et al. (2021) . Ecoregions represent unique assemblies of biodi-
ersity, encompassing all taxa essential for maintaining ecological pro-
esses. The RESOLVE Ecoregions dataset was downloaded from GEE
 Dinerstein et al., 2017 ). 

.3.5. Nitrogen 

Nitrogen is a key nutrient for plant growth and soil organ-
sms, thus influencing SOC dynamics ( Bala et al., 2013 ). Human-
riven changes in nitrogen inputs to soils have evolved over time.
e collected two long-term nitrogen addition indicators: annual at-
osphere nitrogen wet deposition from the National Trends Net-
ork ( https://nadp.slh.wisc.edu/maps-data/ ), and annual grid-based

urface and deep total nitrogen fertilizer application amounts from
dalibieke et al. (2023) . 

.4. Geographic environmental representativeness of the collected samples 

To examine the representativeness of the collected soil samples, we
dopted the Mahalanobis distance ( Mahalanobis, 1936 ) to assess how
ell a grid location fits within the multi-dimensional environmental

pace of the SOC profiles in each ecosystem for each five-year period.
4

his multi-dimensional environmental space is defined by five basic ge-
graphic environmental variables: elevation, slope, annual mean max-
mum/minimum temperature and total precipitation ignoring the fluc-
uations within the five-year period. The distance of a certain grid loca-
ion higher than a specified threshold indicates that the environmental
ondition at that location is reasonably incapable of being represented
y the multi-dimensional environmental space. We set the threshold as
2 = 0.975 in our study, following Patoine et al. (2022) . The result of

his part is shown in Fig. S2 in the Supplementary materials. 

.5. Moving subset window analysis 

To generate robust and reliable estimates of temporal trends of SOC
tock on a continental scale since the 1970s, we conducted a one-
imensional moving subset window analysis to reduce noise in the tem-
oral examination of SOC stock. The sliding window (moving subset)
lgorithm is an effective data processing technique for handling time-
eries data ( Jin et al., 2018 ). It reduces the instability of estimates caused
y data fluctuations or noise, particularly in cases of small sample sizes
r data with temporal correlations. This method has been employed in
ong-term environmental change studies, such as examining changes in
he atmospheric carbon dioxide fertilization effect ( Obermeier et al.,
017 ), global temporal changes in soil respiration rates ( Lei et al., 2021 )
nd soil microbial carbon and nitrogen ( Shi et al., 2024 ). 

In particular, all SOC stock data in each ecosystem were arranged
n ascending order of the sample years. Then, they were iteratively di-
ided into subsets using a 20-year moving window as the minimum
etectability threshold for changes ( Smith et al., 2020 ). Consequently,
he first subset includes the first 20 years of SOC data, with subsequent
ubsets formed by removing the earliest year and adding the next new
ear. Finally, linear regression between SOC stock and year was per-
ormed for each subset, with the slope and P -value indicating the rate
f SOC stock changes and its significance, respectively. To ensure that
he trends of linear regression were not affected by anomalous data, we
uilt linear regressions using the Theil-Sen estimator with the R package
 mblm ’. This is a median-based linear model, which is a robust measure
f central tendency that is less affected by extreme values ( Birkes and
odge, 1993 ). 

.6. Examination of temporal relations between SOC stock and 

nvironmental variables 

To explore these confounding relationships temporally, we propose a
ybrid analytical framework that incorporates moving subset windows
nalysis with statistical methods. First, to depict 45-year temporal vari-
bility of dynamic environmental factors as well as SOC, average values
e.g., median) over time were derived by conducting moving subset win-
ow analysis using a 20-year time window. We then also conducted par-
ial correlation analysis between these temporal average values of SOC
nd environment factors using the ‘ ppcor ’ package in R, which allowed
s to account for interdependencies. To examine responses of SOC dy-
amics to the warming rates, both linear and quadratic regressions were
erformed referencing the methodology of Sáez-Sandino et al. (2023) .
pecifically, we built optimal regressions (linear or quadratic) between
ates of SOC change and temperature change from 1970 to 2014 at two
epths across two ecosystems. The change rates (e.g., slope) of SOC stock
nd temperature on the continental scale over time were derived by con-
ucting moving subset window analysis using the 20-year time window
rom 1970 to 2014. 

.7. Spatial pattern of SOC stock change trends 

By adopting a spatio-temporal digital soil mapping (ST-DSM) ap-
roach ( Heuvelink et al., 2021 ), we generated SOC stock data at five-
ear intervals from 1970 to 2014. The data resolution matched that of
limate data ( ∼2 km). ST-DSM establishes relationships between SOC

https://worldclim.org/
https://nadp.slh.wisc.edu/maps-data/
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1  
nd relevant dynamics and static environmental factors (such as tem-
erature and elevation) for all available factors. Using these relation-
hips, the model then estimates the spatial distribution of SOC for each
pecific time by applying the corresponding environmental conditions.
he environmental factors details can be seen in Table S2. We ensured
ood spatial representativeness of the geographic environment at five-
ear intervals (Fig. S2 and Fig. S3a in the Supplementary materials).
herefore, mean values of dynamic environmental covariates for each

nterval were adopted as environmental predictors. For NPP and nitro-
en wet deposition dataset which is not available in 1970s, the value
f the earliest year was set as replacement. Recursive Feature Elimi-
ation was applied to identify the optimal combination of covariates
 Nussbaum et al., 2018 ). 

Given the differing mechanisms driving SOC changes across depths
nd ecosystems, we developed separate Quantile ERandom Forest (QRF)
odels for two layers respectively in forest and cropland to predict SOC

tock at five-year intervals using ‘ caret ’ package in R. The model accu-
acy was validated using ten-fold cross-validation (Fig. S4 in the Sup-
lementary materials). Lastly, SOC stock map for each five-year inter-
al (e.g., 1970–1974, etc.) was predicted. The SOC change trend over a
iven time period (e.g., 1970–2014) was calculated using linear regres-
ion for each pixel, with the SOC stock value as the dependent variable
nd the corresponding year (taken as the first year of every five-year
nterval) as the independent variable ( Shen et al., 2023 ). 

. Results 

.1. Halts of topsoil and subsoil SOC stock losses since the 1990s 

The temporal trend of SOC stock from 1970 to 2014 shows that both
orest and cropland soils exhibited two stages of changes, experiencing
osses during rapid warming since 1970 ( Fig. 2 a and b), while the SOC
tock losses halted or even shifted to increases as warming slowed down
ince the late 1990s. This shows a good association between SOC and
emperature change ( Fig. 2 c and d). These results are robust against
otential spatial data imbalances, as evidenced by the good spatial rep-
esentativeness of samples, i.e., the average spatial representativeness
f the soil profiles up to 82 % for forest and to 86 % for cropland (Fig.
3a). Besides, the boxplot of SOC stock at five-year intervals (Fig. S3a)
lso shows a similar changing trend with Fig. 2 . 

Topsoil and subsoil in forest exhibit a similar ‘loss-gain’ two-stage
attern. In cropland, only subsoil loss turned to a carbon gain stage,
hile topsoil turned to a steady state started from the window of 1986–
005. Interestingly, in contrast to forest, the magnitude of SOC change
n the subsoil of cropland is more pronounced than those in the topsoil.
nd cropland subsoil retains a more significant amount of SOC stock
ompared with forest subsoil (Fig. S3b). These results emphasize the
istinct SOC dynamics in surface and deeper layers in different ecosys-
ems. 

.2. Relationships between SOC with temperature and other factors over 

ime 

The partial correlation analysis shows that the significant factor as-
ociated with SOC stocks depends on soil depths (topsoil vs. subsoil)
f both ecosystems ( Fig. 3 ). In forest, temperature (Tmax) (partial r ,
 0.69) and NPP (partial r, 0.69) were the main factors associated with

opsoil SOC stock significantly. Additionally, a positive relationship was
bserved between Tmax and NPP (partial r, 0.47). This suggests that
OC losses may be caused by even faster increasing respiration (carbon
utput) since warming enhanced carbon input through promoting NPP
n forest topsoil. For cropland topsoil, temperature is also negatively
elated to SOC changes with the strongest partial correlation (partial r,
 0.56), followed by surface nitrogen fertilizer application amount (Nf_s)

partial r, 0.49) and total nitrogen wet deposition (TNWD) (partial r,
5

 0.48). These findings indicate consistent key negative associations be-
ween temperature and topsoil SOC stock over time across both ecosys-
ems. Meanwhile, nitrogen deposition also showed a negative associ-
tion with SOC stock in cropland topsoil, while nitrogen fertilization
howed a positive association. 

In subsoil, forest SOC change showed the strongest negative correla-
ion with soil water content (SoilW) (partial r, − 0.62), followed by total
itrogen wet deposition (partial r, − 0.46). These relationships may indi-
ate that higher soil water content and nitrogen deposition amount tend
o co-occur with reduced SOC stocks in forest subsoil, while the opposite
onditions may be beneficial for SOC accumulation. We also found a sig-
ificant positive relationship between soil water content and NPP, but an
nsignificant positive relation between NPP and SOC might imply a weak
ositive role of soil water content on subsoil SOC accumulation through
romoting NPP. For cropland subsoil, SOC change exhibited associa-
ions with a broader set of factors than forest. The strongest negative
orrelation was observed with the soil water content (partial r, − 0.85),
ollowed by temperature, TNWD, deep nitrogen fertilizer application
mount (Nf_d), and NPP, with partial correlation coefficients of − 0.64,
 0.64, 0.56, and 0.54, respectively. Similar to forest subsoil, these quan-

ified correlations suggest that increases in soil water content and TNWD
ere associated with SOC decreases in cropland subsoil, while increased
itrogen fertilization amount at deep placement and vegetation produc-
ivity were correlated with SOC accumulation. Unlike the weak correla-
ion in forest subsoil, significant and stronger correlations were observed
etween temperature and SOC stock in cropland subsoil, indicating that
igher temperatures also might contribute to subsoil SOC decreases
n cropland. 

.3. Relationships between SOC change and temperature change rate 

Linear negative relations were identified between the change rate
f annual mean maximum temperature and SOC stock in both depths
n forest and cropland are found to be significant ( P < 0.001) ( Fig. 4 ).
hese regressions resulted from change rates of profiles reveal a thresh-
ld effect of warming rate on SOC loss, namely, carbon gains con-
ert to losses (from positive to negative) once the rate of tempera-
ure increase surpasses a certain threshold (the x -intercept where the
egression line crosses SOC change rate becomes 0). Additionally, we
bserved that in forest, the thresholds of warming rate were similar
or topsoil and subsoil, while in cropland topsoil, the threshold was
ower than subsoil. These results indicate that faster warming can lead
o faster SOC losses in the whole-profile of two ecosystems, but high
emperature alone does not necessarily result in SOC depletion when
he warming rate slowdowns. This is also supported by the weak-
ned negative relationship between temperature and SOC stock at the
ighest temperature level in the 2010s (Fig. S6 in the Supplementary
aterials). 

.4. Spatial patterns of SOC stock changes 

From 1970 to 2014, the spatial pattern of SOC stock changes in
he top 1 meter demonstrated shifts in both forest and cropland across
wo stages, with most areas showing opposite trends between the first
 Fig. 5 a and d) and second stages ( Fig. 5 b and e). During Stage I, forests
n the northeastern high-latitude regions and along the East Coast expe-
ienced substantial SOC losses exceeding 0.2 Mg ha-1 yr-1 , while large
arts of western forests, such as the Pacific Northwest and northern
ocky Mountains, exhibited SOC gains of similar magnitude. However,

n Stage II, characterized by decelerated warming, the direction of car-
on change reversed in nearly all forest areas. Overall, we found that
pproximately 54 % of the stable forest showed SOC stocks gains over
he 45-year period ( Fig. 5 c). SOC stocks in stable forests within the top
-meter depth across the CONUS increased by 1.41 % (from 19.05 Pg to
9.32 Pg) (Table S4 in the Supplementary materials). Additionally, SOC
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Fig. 2. The trends of topsoil and subsoil SOC stock changes. SOC stock trends were calculated based on a moving subset window approach in cropland (a) and 
forest (b). The bar indicates the slope of SOC stock change in each two decades. Stars above the bars indicate the significance of slopes: ∗ ∗ ∗ P < 0.001, ∗ ∗ P < 0.01, 
∗ P < 0.05. To compare trends of temperature and SOC in forest (c) and cropland (d), we standardized each factor using the Z -scores method, then fit the curves using 
polynomial regression. To keep the consistency, the polynomial degree was set to be 3 for temperature, and 2 for SOC based on a sensitive experiment as shown in 
Fig. S5 in the Supplementary materials. 
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ains were more frequently observed in forest located in relatively arid
nd higher-altitude regions with higher topographic and physiographic
iversity ( Fig. 6 ). 

During Stage I, large areas of cropland experienced severe carbon
osses. However, the core region of the Corn Belt, along with croplands
6

n Kansas and Oklahoma, showed obvious SOC gains during this stage.
n Stage II, regions that had previously experienced severe SOC losses
howed recoveries. However, a larger proportion of stable cropland ar-
as (45.1 %) compared to forest showed SOC losses over the 45-year
eriod ( Fig. 5 f). Overall, SOC stocks in stable cropland within the top
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Fig. 3. Temporal relationships among environmental factors. Partial correlation coefficients (partial r ) among averages of all variables in each twenty-years-window 

in forest topsoil (a), cropland topsoil (b), forest subsoil (c) and cropland subsoil (d). The orientation and color of ellipses indicate the sign of correlation, with color 
intensity representing the strength. Significance levels: ∗ ∗ ∗ P < 0.001, ∗ ∗ P < 0.01, ∗ P < 0.05. Abbreviations are as follows: SOC, soil organic carbon stock; Tmax, 
annual mean maximum temperature; Prec, annual total precipitation; SoilT, soil temperature; SoilW, soil water content; NPP, net primary production; TNWD, total 
nitrogen wet deposition; Nf_s, surface total nitrogen fertilizer application amount; Nf_d, deep total nitrogen fertilizer application amount. 
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-meter depth across the CONUS increased by 1.14 % (from 13.1 Pg
o 13.25 Pg). Unlike forest, the environmental characteristics of regions
ith SOC gains and losses in croplands were not very different except

or the topographic diversity ( Fig. 6 ). 

. Discussion 

.1. Two-stage of SOC change 

From 1970 to 2014, analysis of SOC dynamics across the CONUS
evealed a two-stage pattern in both forests and croplands, evident at
ontinental and regional scales. Inconsistencies found in previous stud-
es (Table S5 in the Supplementary materials) imply that examining only
egments of one period could lead to misunderstandings about the SOC
hanges and their relationship with temperature changes. 

Our findings suggest that the halts of SOC losses in the CONUS co-
ncide temporally with the deceleration of warming, supporting our hy-
othesis that SOC responses vary depending on temperature change
7

ates. And our regression analysis between SOC change and temper-
ture change rates identified a threshold effect of warming rates on
OC changes. This threshold phenomenon suggests that lower warming
ates may promote SOC accumulation instead of losses. This continental-
cale finding is consistent with the Tibetan alpine grassland case study
howing differential effects at + 2 °C versus + 4–6 °C increasing level
f temperature ( Liang et al., 2024 ). A global study reported a plateau
n soil respiration rates during 2000–2016 compared with a rapid rise
uring 1987–2000, which may help explain our results on a large spa-
ial scale. Similarly, another global study reported a two-stage change
n topsoil (0–30 cm) microbial carbon, with stabilization during 1988–
014 followed by a decline after 2015 when warming accelerated again
 Shi et al., 2024 ). 

Our study further demonstrated that similar threshold-driven dy-
amics of warming rates occur in deeper soil layers (30–100 cm). No-
ably, we found that forest exhibited a more pronounced recovery than
ropland in both topsoil and subsoil. Additionally, during the warming
iatus, we found that the observed halts of SOC stock losses (especially
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Fig. 4. Regressions between change rate of SOC stock and warming. The dots represent the slope of SOC stock in each twenty-year-wide moving window from 1955 
to 2014. The lines represent the fitted linear regressions (L) selected between the linear regression or quadratic regression. Statistical supports for these regressions 
are provided in Table S3 in the Supplementary materials. 
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n the subsoil of both ecosystems) may be in part caused by changes in
ther environmental factors, such as the possible slowed SOC decom-
osition due to the reduced soil water content ( Fig. 1 c and d) under
roughts ( Peterson et al., 2013 ), increased NPP in forest (Fig. S7 in the
upplementary materials) and nitrogen fertilization in cropland (Fig.
8 in the Supplementary materials). These findings underscore the need
or more studies on the role of varying warming rates in long-term SOC
hanges and considering influences from other factors, which will en-
ance our ability to model the nonlinear characteristics of SOC fluctua-
ions. 

The regional pattern demonstrated that under conditions of rapid
arming, a higher proportion of forest areas experienced SOC gains,
8

articularly in western and southern regions characterized by relative
ow aridity, higher elevations and complex topography (Fig. S9a in the
upplementary materials). Due to that these areas support higher bio-
iversity, which can enhance carbon sequestration ( Spohn et al., 2023 ).
owever, in Stage II, these regions showed SOC losses with less differ-
nces of geographic characteristics (Fig. S10b), suggesting that the neg-
tive impacts of sustained high temperatures outweighed the benefits
f the deceleration in warming in western and southern regions. Con-
ersely, most croplands experienced SOC losses during Stage I, but a
reater proportion displayed SOC gains in Stage II (Fig. S10 in the Sup-
lementary materials). These recoveries can be attributed to both the
lowing pace of warming and improved agricultural management prac-
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Fig. 5. Spatial pattern of SOC stock change in the top 1 m of the CONUS. The SOC change was the slope of linear regression, with the SOC stock value as the 
dependent variable and the corresponding year as the independent variable. Stage I includes the data from 1970 to 1974 to 1995–1999, and Stage II includes the 
data from 1995 to 1999 to 2010–2014. 
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ices, such as optimized fertilization and crop residue retention (Fig. S11
n the Supplementary materials). 

.2. Depth- and ecosystem-dependent SOC changes 

Our findings indicate that prominent SOC changes occur not only
n the topsoil, but also in the subsoil, although subsoil SOC stocks
ave traditionally been considered relatively stable, largely due to en-
anced chemical and physical protection mechanisms at deeper layers
 Luo et al., 2019 ). In forest, both topsoil and subsoil displayed consis-
ent change patterns, but subsoil exhibited greater resistance to carbon
oss, as it experienced smaller losses during periods of depletion and
9

ccumulated more carbon than the topsoil during recovery stages. In
ontrast, the cropland SOC in subsoil was even more responsive than
n topsoil during the two phases of temperature change. The more car-
on loss of subsoil than topsoil during the first phase with high warm-
ng rate is consistent with the finding in China cropland ( Zhou et al.,
025 ), indicating that changes in subsoil are just as obvious as those
n topsoil under rapid warming. During the warming hiatus phase, sub-
oil SOC stocks increased in both ecosystems, suggesting that subsoil
ay contribute to carbon sequestration under temperature fluctuations.
ossible explanations for the carbon sequestration potential in subsoil
nclude reduced direct warming effects and a stronger dependence on
oil moisture relative to topsoil based on our results. These insights un-
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Fig. 6. Background environment of SOC stock change types from 1970 to 2014. The percentages in parentheses represent the proportion of each type’s area relative 
to the total area. The classification of types is based on the magnitude of slope, as detailed in Fig. 5 . The error bars represent the mean ± standard deviation (SD). 
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erscore the instability of SOC stock both in topsoil and subsoil under
limate warming and suggest the sensitivity of subsoil and topsoil to
nvironmental changes varies across different ecosystems. 

.3. Distinct dominated factors influencing topsoil and subsoil SOC 

ynamics 

Our findings reveal that temperature was the most influential factor
otentially driving topsoil SOC changes, which is consistent with expec-
ations from warming experiments. Our results further highlight distinct
nfluence of other factors in each ecosystem. In forest ecosystems, the
ositive role of increased NPP on topsoil SOC cannot be overlooked. Sim-
lar trade-off between SOC and plant-derived C were found in the forest
cosystem by a meta-analysis of warming experiments ( Lu et al., 2013 ).
ut our results indicate the rise in soil respiration could ultimately lead
o overall net SOC losses in forest topsoil of the CONUS under rapid
arming from 1970s to 1990s. Meanwhile, our results support the view

hat nitrogen influences cannot be ignored in cropland topsoil carbon
ynamics ( Beillouin et al., 2023 ). Previous studies found that nitrogen
ddition can enhance plant growth and thus organic carbon input, but
xcessive nitrogen can also lead to increased organic matter decompo-
ition and potential SOC loss ( Bala et al., 2013 ). In our study, despite
oth being nitrogen addition, nitrogen fertilization may have a posi-
ive effect on SOC with a positive partial correlation, whereas nitrogen
eposition has a negative correlation in the topsoil of cropland. This
ivergence may be due to differences in nitrogen sources under vary-
ng human management context ( Bala et al., 2013 ; Deng et al., 2020 ).

hile nitrogen fertilization is primarily aimed to increase crop yields
thereby enhancing plant carbon inputs), modern agricultural prac-
ices that combine fertilization with organic amendments and residues
anagement (Fig. S12) may further benefit soil health and carbon

ccumulation ( Lu et al., 2011 ; Bai et al., 2023 ), especially as the
10
nited States has actively promoted organic fertilizers since the 1980s
 Harwood, 1993 ). This potential positive effects of nitrogen fertiliza-
ion was consistent with a global meta-analysis ( Ling et al., 2025 ). In
ontrast, the nitrogen deposition, as an inorganic nitrogen source with-
ut complementary management, may primarily accelerate carbon de-
omposition ( Song et al., 2020 ; Püspök et al., 2023 ) or changing the
tability of SOC ( Bala et al., 2013 ; Tang et al., 2023 ) on a long-term
cale. 

For subsoil SOC dynamics, soil water content emerges as a crucial
egative factor in both forest and cropland. Yet, the relative importance
f soil moisture among SOC drivers is not well studied and the responses
f SOC to moisture are less uniformly described than temperature in
ome models ( Pallandt et al., 2022 ). Given the lower carbon density
nd higher proportion of mineral-associated organic carbon (MAOC) in
ubsoil compared to topsoil, the importance of soil moisture in subsoil
s likely because water availability typically limits microbial and enzy-
atic activities more strongly than temperature ( Guo et al., 2024 ). The

levated moisture may override this limitation by undermining phys-
cal protection of subsoil SOC ( Cates et al., 2022 ; Hao et al., 2025 ),
hereby enhancing SOC decomposition. This result aligns with evidence
hat excessive saturation can disrupt carbon stabilization where mineral
urfaces dominate stabilization ( Huang and Hall, 2017 ). Apart from soil
oisture, atmospheric nitrogen deposition also has significant negative

mpacts on subsoil carbon in both forest and cropland. This result agrees
ith the long-term negative effects of nitrogen deposition on subsoil
 Hu et al., 2024 ), suggesting a long-term monitoring of the effect of at-
ospheric nitrogen deposition on subsoil carbon dynamics is needed.
dditionally, subsoil SOC stock in cropland is also significantly posi-

ively influenced by deep nitrogen fertilization and NPP. The stronger
ositive effects of NPP on subsoil SOC, compared to topsoil, highlights
ifferent mechanisms of subsoil SOC accumulation in cropland. These
nsights underscore the variation of carbon change mechanisms across
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ifferent soil depths and ecosystems and the need for targeted manage-
ent strategies to enhance carbon storage. 

Some studies have utilized spatial temperature or precipitation gra-
ients to elucidate carbon-climate relationships, while our data shows
hat the temporal patterns of these relationships ( Fig. 3 ) are significantly
ore pronounced compared to those derived from spatial patterns (Fig.

12). This highlights the importance of examining temporal relation-
hips among environmental factors to gain a more accurate understand-
ng of their impacts on SOC changes. 

.4. Limitations and outlook 

It is important to note the limitations of this study. First, similar to
ny observational analysis, there may be underlying bias caused by the
patial and temporal inconsistency of soil profile data. Our 10,639 soil
rofiles have generally good spatial representativeness, especially for
he cropland, as can be seen from Fig. S2. The relatively low represen-
ativeness for Florida and forest in areas of the Rocky Mountain sug-
ests the necessity for more observations to investigate these regions.
econd, our study area (25°N to 49°N) mainly experiences a temper-
te climate, so the findings may not represent other climate conditions,
uch as tropical and arctic climates. Third, our analysis of environ-
ental drivers of SOC changes faces inherent limitations due to data

onstraints. While the moving window approach successfully captured
ontinental-scale temporal correlations between SOC dynamics and en-
ironmental factors, its limitations in sample size —combined with the
ack of long-term resampled SOC observations under real environmental
onditions —constrain our ability to reliably investigate more complex
nteractive effects or conduct detailed analyses across environmental
radients (e.g., variations in initial clay content or climate type among
amples can influence the SOC changes). We stress that the partial cor-
elations identified in this study reflect statistical associations rather
han demonstrated causal relationships, therefore, these continental-
cale correlations warrant targeted investigation into the specific mech-
nisms, such as the subsoil SOC responses to dynamic soil moisture. In
ddition, some important dynamic factors (e.g., atmospheric CO2 con-
entration, microbial traits, harvesting and fires in forest) are not con-
idered due to lack of long-term high-resolution data and the resolution
f available data, such as the spatial resolution of soil water content is
lso relatively low. With improvement of the spatial and temporal reso-
ution of related data, future studies incorporating experimental manip-
lations, long-term monitoring, and causal inference approaches will be
ssential to validate and mechanistically explain these large-scale SOC
hanges. 

Our study shows a halt of SOC stock loss in forest and cropland in
he CONUS since the 1990s following the warming-induced loss since
he 1970s. However a noticeable accelerated increase in temperature in
he U.S. since 2015 ( Modak and Mauritsen, 2021 ) might contribute to
enewed SOC losses in forest and cropland. More available data after
014 can extend and verify our findings. Accordingly, in forest, as veg-
tation growth is increasingly vulnerable as the global CO2 fertilization
ffect declines ( Wang et al., 2020 ), it is necessary to assess how current
hifts in vegetation growth impact SOC storage in forest presently and
n future. This is particularly critical for forests at higher elevations. As
or cropland, by tailoring fertilizer strategies to topsoil and subsoil, we
an potentially enhance soil carbon sequestration in a more sustainable
anner. Importantly, threshold effects of warming rates on SOC change

re noticeable but the specific threshold values identified in this study
e.g., the about 0.1 °C yr-1 warming rate threshold for SOC loss in forest
opsoil) should be interpreted with caution. The environmental change
epresented by our profiles may amplify the observed effects, potentially
nfluencing these quantitative estimates. Hence, our findings highlight
he critical need for future mechanistic experiments on SOC dynamics
o consider the effects of warming rates across the entire soil profile
nd to validate the observed threshold effects. These results further em-
hasize that Earth system models should adopt ecosystem-dependent
11
nd depth-dependent parameters to better capture the complex, nonlin-
ar responses of SOC to climate change. Our findings not only provide
 deeper observational understanding of a whole-profile SOC dynamics
n a continental scale, but also offer practical insights for addressing the
ustainable development challenges posed by global climate change. 

. Conclusions 

This study, as one long-term (1970–2014) and large-scale analysis
f SOC change based on field measurements, provides a comprehen-
ive understanding of the soil organic carbon (SOC) in forest and crop-
and across the CONUS. By leveraging whole-profile SOC measurements
nd integrating temporal analysis with statistical methods and machine-
earning, our data indicates a robust ecosystem-dependent two-stage
hange of SOC stock, characterized by continental-scale halts in SOC
oss following warming deceleration since the late 1990s. Overall, SOC
tocks increased by 1.41 % (from 19.05 Pg to 19.32 Pg) in forest and 1.14
 (from 13.1 Pg to 13.25 Pg) in cropland within the top 1-meter across

he CONUS. Our results revealed that the two-stage patterns across both
opsoil and subsoil might be closely related to the warming rates change,
ith a threshold effect of warming rates on SOC loss. Partial correlation
nalyses highlight that the temperature is likely the primary factor in-
uencing topsoil SOC stock, showing the strongest significant negative
artial correlations in both forest and cropland. Meanwhile, soil wa-
er content emerged as the dominant factor correlated with subsoil SOC
hanges, exhibiting significant negative correlations in cropland and for-
st. Furthermore, various other environmental factors across different
oil depths and ecosystems suggest the need for targeted management
trategies to enhance carbon storage, such as the possible positive effects
rom increasing NPP on forest topsoil and nitrogen fertilization on two
ayers of cropland. These findings emphasize the necessity of capturing
esponses of whole-profile SOC dynamics to varying warming rates and
ombined effects from different environment drivers, which supports the
odeling of long-term carbon fluxes and formulation of ecosystem and
epth-dependent strategies to achieve carbon neutrality for sustainable
evelopment in the context of global climate change. 
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