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A B S T R A C T

Rice paddies serve as important reservoirs of soil organic carbon (SOC) and are hotspots for microbial-mediated 
carbon conversion. Understanding the regulatory mechanisms of SOC in rice paddies is important for carbon 
sequestration management under global warming. Most previous studies on the influencing factors of paddy SOC 
have focused on a single habitat, such as bulk soil (BS) or rhizosphere soil (RS). However, the divergence in SOC 
regulatory mechanisms between BS and RS, the mediating role of rhizoplane soil (RP) microbial communities on 
SOC in RS, and the interactive effects of multiple influencing factors on habitat-specific SOC remain poorly 
quantified, particularly at regional scales. Herein we used piecewise structural equation modeling and random 
forest model to explore the effects of biotic-abiotic factors on SOC between BS and RS of rice paddies in the 
Yangtze River Delta. Significant differences in SOC, soil physicochemical, and microbial community properties 
between BS and RS. Soil physical and chemical properties had the greatest effect on SOC, with a standardized 
total effect of 0.76 vs. 0.53 for BS, and 0.72 vs. 0.94 for RS, respectively. The direct effect of microbial com-
munities on SOC in RS (standardized direct effect, 0.33) was significant and positive, while it was marginal in BS 
(standardized direct effect, 0.14). Methane microbial communities in RP on SOC in RS were also markedly 
important. Notably, soil metallic elements had a significant positive effect on SOC in BS with a standardized path 
coefficient of 0.30 (P < 0.05), but a negative effect on SOC in RS with a path coefficient of − 0.18 (P < 0.05). Soil 
physical properties had a positive indirect effect on SOC in BS with an indirect effect of 0.39 through its effect on 
soil chemical properties, metallic elements, and microbial community properties, while a positive indirect effect 
on SOC in RS with an indirect effect of 0.66 mainly through its effect on soil chemical properties. The indirect 
effects of climatic factors and agricultural management on SOC between BS and RS were also nonnegligible. Our 
study reveals the complex interactive influence of various categories of biotic-abiotic factors with different 
functions on paddy SOC between BS and RS at a regional scale, as well as the contribution of microbial com-
munities in RP to SOC in RS. This study improves our understanding of the regulatory mechanisms for SOC 
storage and offers valuable guidance for paddy soil carbon sequestration management.

1. Introduction

Soil organic carbon (SOC) is the largest carbon pool in terrestrial 
ecosystems, playing a critical role in global carbon cycle (Batjes, 1996). 
SOC influences soil structure, fertility, agricultural productivity, and 
ecosystem functioning (Davidson and Janssens, 2006). Rice paddies, 
rich in SOC, serve as an important agricultural carbon reservoir (Liu 
et al., 2021). Due to the gradual accumulation of organic carbon in rice 

paddies under the unique water tillage and maturation process (Liu 
et al., 2019), the carbon storage of rice paddies is more than 30 % higher 
than that of the corresponding upland soils per unit area (Qin et al., 
2013). The carbon sequestration efficiency of rice paddies is more than 
39 %–127 % higher than their adjacent upland counterparts (Chen et al., 
2021). Within the context of climate change and intensive human ac-
tivities, it is important to explore the underlying mechanisms driving 
SOC spatial distribution in rice paddies for sustainable management and 
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carbon sequestration.
Rice paddies exhibit distinct SOC formation mechanisms compared 

to other soil types due to their unique hydrothermal conditions 
(Kögel-Knabner et al., 2010). Anaerobic environments under flooded 
conditions generally slow organic matter decomposition, promoting 
SOC accumulation (Wu, 2011). In contrast, non-flooded periods increase 
soil microbial activity and SOC turnover. SOC formed under the alter-
nating two periods is influenced by various factors, including climatic 
factors, soil physicochemical properties, microbial community proper-
ties, and agricultural management (Luo et al., 2017; Philippot et al., 
2024; Wu et al., 2024b; Chen et al., 2025). Numerous studies have been 
conducted on the above influencing factors (Davidson and Janssens, 
2006; Crystal-Ornelas et al., 2021), and more attention has been recently 
paid to soil microorganisms (e.g., bacteria, fungi, and archaea). This is 
probably because they can be an important source of SOC (Kallenbach 
et al., 2016), and play a unique role in SOC accumulation and decom-
position process (Lehmann and Kleber, 2015; Jansson and Hofmockel, 
2020). Particularly, microbial community properties, such as commu-
nity composition, diversity, and network complexity, influence the sta-
bility and turnover of SOC in rice paddies (Wang et al., 2023; Wu et al., 
2024b).

In the special redox environment of rice paddies, methane microor-
ganisms emerge as keystone taxa that not only mediate methane flux but 
also orchestrate SOC transformation through substrate competition and 
metabolic cross-feeding (Cai et al., 2016; Jansson and Hofmockel, 
2020). This dual role positions methane microorganisms at the nexus of 
SOC stabilization and greenhouse gas emission dynamics in rice paddies. 
The centrality of methane microorganisms to rice paddy carbon budgets 
is underscored by their capacity to couple SOC turnover with atmo-
spheric feedbacks. Methanogens (e.g., Methanosarcina) drive hydro-
genotrophic and acetoclastic pathways that compete with iron reducing 
bacteria for organic substrates, thereby regulating SOC mineralization 
rates. Concurrently, methanotrophs (e.g., Methylocystis, Methylomonas) 
oxidize CH4 to CO2 while synthesizing refractory biomarkers, creating a 
microbial carbon pump that redirects labile SOC toward stabilized pools 
(Cai et al., 2016; Qian et al., 2023; Zheng et al., 2024a). Such 
redox-dependent functional partitioning ultimately dictates whether 
rice paddies act as net carbon sinks or sources.

Bulk soil (BS), rhizosphere soil (RS), and rhizoplane soil (RP) show 
gradient differences in physicochemical properties and microbial ac-
tivities, and all three were coupled dynamically through carbon flow, 
oxygen gradient, and biomigration, which jointly shaped the spatial 
heterogeneity of soil carbon pools in rice paddies (Kuzyakov, 2010; 
Edwards et al., 2015; Fan et al., 2017). Previous studies on SOC have 
focused on a single habitat, such as BS (Luo et al., 2017; Wang et al., 
2023) or RS (Luo et al., 2021; Villarino et al., 2021). In recent years, 
increasing attention has been paid to the differences in microbial com-
munities among BS, RS, and RP (Fan et al., 2017). Differences between 
BS and RS led to differences in the stability and carbon uptake of soil 
microbial communities (Lange et al., 2024). A previous study showed 
that bacterial community richness was significantly higher in BS when 
compared with RS in rice paddies, but community distances for RS 
bacteria were significantly higher than in BS (Tian et al., 2022). Another 
study showed that Actinobacteria and Bacteroidetes were significantly 
more abundant in RP, compared to RS and BS; while Chloroflexi was 
significantly less abundant in RP compared to the other habitats (Fan 
et al., 2017). Soil microorganisms in RS and RP receive carbon metab-
olites from the plant through root exudates, thereby promoting the 
accumulation of SOC in RS. Furthermore, plant root exudates promote 
the enrichment of methanogens in RP, while RS oxidizing layer pro-
motes the activity of methanotrophs, forming a “meth-
ane-producing-consuming” microregion that regulates the spatial 
distribution of SOC in rice paddies (Zheng et al., 2024a). Thus, methane 
microbial-mediated methane fluxes from rice paddies are closely related 
to long-term carbon storage. However, existing studies have not 
comprehensively analyzed the differences in microbial community 

properties in different habitats of rice paddies. The divergence in SOC 
regulatory mechanisms between BS and RS, and the mediating role of 
microbial communities in RP on SOC content in RS are still unknown.

SOC is usually affected by several biotic and abiotic factors together. 
An important issue is to quantify the interactive influence of multiple 
factors. Previous studies have mainly quantified the impact pathways of 
climate, soil physicochemical properties or microbial communities, and 
quantified their direct and indirect effects (Deng et al., 2023; Wang 
et al., 2023; Fan et al., 2025). A study indicated that microbial metabolic 
limitation regulated by carbon nitrogen phosphorus stoichiometric ratio 
stimulated SOC accumulation in rice paddies (Wang et al., 2024). 
Recently, some scholars have also begun to pay attention to agricultural 
management (Wu et al., 2024a; Xin et al., 2024; Abrar et al., 2025) and 
soil metallic elements (Moore et al., 2023; Pei et al., 2024; Zeng et al., 
2024). However, the interactive effects of multiple influencing factors 
on SOC in different habitats of rice paddies are still unclear.

The Yangtze River Delta (YRD) is one of the major agricultural and 
rice-producing regions in China, and multiple factors and management 
have regulated SOC in the YRD region. Thus, it can be an optimal area to 
identify the regulatory mechanisms for SOC between BS and RS of rice 
paddies. Particularly, we focus on combining the comprehensive mi-
crobial communities (bacteria and archaea) and the functional microbial 
communities (methanotrophs and methanogens) in the three habitats 
(BS, RS, and RP) to analyze their contributions to SOC, incorporating 
climatic factors, soil physicochemical properties, metallic elements, and 
agricultural management. We addressed three research hypotheses in 
the current study. First, SOC drivers differ between BS and RS due to 
habitat-specific microbial-plant-environment interactions. Second, mi-
crobial communities in RP may mediate SOC storage in RS due to 
proximity distance and cascading effects among microorganisms. Third, 
soil metallic elements drive SOC differently due to soil physicochemical 
and microbial community differences in BS and RS. Based on the above 
hypotheses, the objectives of the study are: (1) to compare the differ-
ences in SOC, soil physicochemical, and microbial community proper-
ties between BS and RS in Yangtze River Delta paddies; (2) to quantify 
and compare how climatic factors, soil physicochemical properties, 
metallic elements, microbial community properties, and agricultural 
management interactively regulate SOC storage between BS and RS; (3) 
to examine whether the microbial communities in RP mediate SOC 
storage in RS. This study aims to provide a scientific basis for under-
standing soil carbon cycling mechanisms in different habitats and 
improving soil carbon management in rice paddies.

2. Materials and methods

2.1. Study sites and soil sampling

The study area is in the YRD (including Jiangsu Province, Zhejiang 
Province, and Chongming Island of Shanghai), located in eastern China 
(Fig. 1a). The area belongs to the warm-temperate and subtropical 
summer monsoon climate, spanning warm-temperate semi-humid and 
subtropical humid climate zones. Most of the area lies in the subtropical 
humid climate zone. The northern area comprises flatlands, while the 
southern area is characterised by hilly terrain (Fig. 1b). Rice is the main 
crop in the region, and most of the rice grown in this region is double- 
cropping rice.

Sampling was carried out within rice paddies in late September to 
early October. We chose to sample during this period, which is the 
mature stage of rice growth (Bhattacharyya et al., 2013). The determi-
nation of sampling sites was mainly based on the Latin Hypercube 
sampling method (Minasny and McBratney, 2006). We sampled 32 sites 
scattered across typical rice paddies (Fig. 1b) in the area (117◦30′ 
E− 121◦37′ E, 28◦28′ N–34◦35′ N) and these sampling sites were at least 
5 km apart. The mean annual temperature (MAT) of the sample sites 
ranges from 14.2 ◦C to 18.5 ◦C, and the mean annual precipitation 
(MAP) ranges from 717.5 mm to 1661.3 mm. The pH of the sample sites 
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ranges from 5.2 to 8.4 (Fig. S1), and the sum of the proportions of silt 
and clay ranges from 58.4 % to 90.0 %.

A 10 m × 10 m square area at each sampling site was established to 
sampled five points within the square (Mao et al., 2020). At each sam-
pling site, we sampled three different habitats i.e., BS, RS, and RP 
(Fig. 1c; the sampling method referred to Mendes et al., 2014; Edwards 
et al., 2015; Fan et al., 2018), and collected a total of 96 samples. In this 
square area, we collected five rice plants using a shovel from each of the 
four corners and the center. Excess loosely bound soils around the 
rhizosphere were shaken off. The soil around the roots was carefully 
collected with disposable sterile rubber gloves, and then mixed to form a 
composite sample, and used as RS. Using a soil drill, inter-montane soil 
was collected at each of the five sampling points at a depth of 0–20 cm 
adjacent to the collected rice plants and then mixed to form a composite 
sample, and used as BS. We brought back the rice plants in a sterile 
ziplock bag along with other soil samples to the laboratory after col-
lecting RS samples, where the root system of the rice plants was cut and 
shredded, and soil solids were collected by ultrasound and centrifuga-
tion by adding sterile ultrapure water to a Falcon tube, which was then 
preserved in a 50 mL sterile centrifuge tube, and used as RP.

The RP and a part of BS and RS samples in 50 mL sterile centrifuge 
tubes were immediately stored at − 80 ◦C for DNA extraction and high- 
throughput sequencing. We placed the remaining BS and RS in a 4 ◦C 
refrigerator for subsequent determination of soil physicochemical 
properties. SOC was determined by the K2Cr2O7-H2SO4 oxidation 
method (Mebius, 1960) with air-dried soil. Although RP did not have 
enough samples for soil physicochemical properties, soil microbial 
communities in RP were measured because they may influence soil 
microbial communities or SOC in RS.

2.2. Soil physicochemical properties and metallic elements measurements, 
and other data collection on abiotic factors

pH was measured by a pH electrode (PHS-3G, Shanghai, China). Soil 
water content (SWC) and soil bulk density (SBD) were determined by 
oven-drying fresh soil. Total nitrogen (TN) concentration was deter-
mined by the Kjeldahl method (Bremner, 1960). Ammonium nitrogen 
(NH4

+-N) and nitrate nitrogen (NO3
− -N) concentrations were determined 

by Ultraviolet–Visible spectrophotometry (Hood-Nowotny et al., 2010). 
Total phosphorus (TP) concentration was determined by sodium hy-
droxide melting and molybdenum antimony colorimetric method. 
Available phosphorus (AP) concentration was determined by NaHCO3 
extraction and molybdenum antimony colorimetric method (Olsen, 
1954). Total potassium (TK), available potassium (AK), exchangeable Ca 
(ExCa), and exchangeable Mg (ExMg) concentrations were determined 
by atomic absorption spectrometry (Page, 1982). Ca, Mg, Mn, Cu, Cd, 
and Cr concentrations were determined using a microwave (Kubrakova 
and Toropchenova, 2013). Available Mn (AMn), available Cu (ACu), 
available Cd (ACd), and available Cr (ACr) concentrations were 
measured by inductively coupled plasma optical emission spectrometry 
(ICP-OES; iCCP 6300, Thermo Scientific, USA) (de Santiago-Martín 
et al., 2015).

Climatic factors included MAT, MAP, soil transpiration evapotrans-
piration ratio (T/ET) (Niu et al., 2020), transpiration (T) (Niu et al., 
2020), evapotranspiration (ET) (Niu et al., 2020), snow water equiva-
lent (SWE) (https://ldas.gsfc.nasa.gov/gldas/), and shortwave radiation 
(Srad) (Abatzoglou et al., 2018). MAT and MAP from 1990 to 2020 for 
each sampling site were obtained from the WorldClim database (https:// 
www.worldclim.org/). Agricultural management was used from Jiangsu 
(https://tj.jiangsu.gov.cn/2021/index.htm), Shanghai (https://tjj.sh. 
gov.cn/tjnj/tjnj2021.htm), and Zhejiang (https://tjj.zj.gov.cn/art/20 

Fig. 1. Location of the study area (a), the geographic distribution of sampling sites in rice paddies (b), and schematic representation of different habitats (c).
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21/10/28/art_1525563_58951576.html) Statistical Yearbook 2021, 
including fertilization, total crops sown area (TCSA), gross agricultural 
product (GAP), total power of agricultural machinery (TPAM), and 
pesticide usage. Vegetation factors included fractional vegetation cover 
(FVC) and net primary production (NPP), which were used from the 
MODIS satellite imagery MOD13A1 and MOD17A3H products, respec-
tively. Terrain factors were used from the global 30 m resolution digital 
elevation model (DEM) data of the National Aeronautics and Space 
Administration (NASA) in 2020 (https://www.earthdata.nasa.gov/esd 
s/competitive-programs/measures/nasadem) including elevation, 
topographic wetness index (TWI), stream power index (SPI), and slope. 
Atmospheric deposition was used from ChinaHighAirPollutants (CHAP) 
dataset (Wei et al., 2023) including SO2 and NO2.

2.3. DNA extraction, illumina sequencing, and sequence processing

Total soil genomic DNA was extracted from the bulk, rhizosphere, 
and rhizoplane soil samples using Fast DNA® SPIN kit for soil (MP 
Biomedicals, Santa Ana, CA, USA) according to manufacturer’s in-
structions. After soil genomic DNA extraction, the integrity of the 
extracted genomic DNA was detected by 1 % (w/v) agarose gel elec-
trophoresis. Using NanoDrop 2000 Ultraviolet–Visible spectrophotom-
eter to detect DNA purity and concentration (Thermo NanoDrop 2000 
Technologies, Wilmington, DE, USA). The soil genomic DNA was stored 
at − 20 ◦C to maintain its stability until further analyses were performed 
after the extraction process.

An aliquot of 45 ng of purified DNA was taken from each sample to 
be used as the template for polymerase chain reaction (PCR). The bac-
teria and archaea specific V4-V5 hypervariable region of the 16S rRNA 
gene were performed using the primer pairs 515F/907R (5′- 
GTGCCAGCMGCCGCGG-3′ and 5′-CCGTCAATTCMTTTRAGTTT-3′) and 
Arch519F/Arch915R (5′-CAGCCGCCGCGGTAA-3′ and 5′- 
GTGCTCCCCCGCCAATTCCT-3′), respectively (Caporaso et al., 2011; 
Cai et al., 2016; Jiao et al., 2018). The methanotrophs (pmoA) and 
methanogens (mcrA) specific hypervariable region of the pmoA-11 and 
mcrA-2 gene were performed using the primer pairs A189F/mb661R 
(5′-GGNGACTGGGACTTCTGG-3′ and 5′-CCGGMGCAACGTCYTTACC-3′) 
and Mlas-mod-F/mcrA-rev-R (5′-GGYGGTGTMGGDTTCACMCARTA-3′ 
and 5′-CGTTCATBGCGTAGTTVGGRTAGT-3′), respectively (Kolb et al., 
2003; Steinberg and Regan, 2009). Illumina adapters and unique barc-
odes were incorporated into the end of the reverse primer (Berg et al., 
2012).

The reactions were performed in a final volume of 25 μL containing 
2.5 μL 10 × PCR buffer II, 0.5 unit of AccuPrime Taq DNA Polymerase 
High Fidelity (Invitrogen, Carlsbad, CA, USA), 2 μL of template DNA, 
and 3 μL of forward and reverse primers. The PCR products were 
checked by agarose gel electrophoresis, and the target bands were 
recovered by gel tapping and purified using the AxyPrep Gel Purification 
Kit (Axygen Scientific Inc., USA). PCR products were sequenced using an 
Illumina MiSeq platform (300 bp paired-end) (Guangdong Magigene 
Biotechnology Co., Ltd., Guangzhou, China).

Raw sequencing data were qualified through screening and the 
removal of sequences that were shorter than 200 bp, with a quality score 
below 20 (Q < 20), contained ambiguous bases or did not exactly match 
the primer sequences and barcode tags. Passed sequences were der-
eplicated and subjected to the DADA2 algorithm to identify indel- 
mutations and substitutions (Callahan et al., 2016). The trimming and 
filtering were performed on paired reads with a maximum of two ex-
pected errors per read. We removed the singlet amplicon sequence 
variants (ASVs) and those classified as mitochondria and chloroplasts to 
improve data reliability. The phylogenetic affiliation of bacteria and 
archaea ASVs was analyzed by uclust algorithm (http://www.drive5. 
com/usearch/manual/uclust_algo.html) against the SILVA (version 
SSU138.1) database (http://www.arb-silva.de) using a confidence 
threshold of 80 %. The pmoA and mcrA ASVs were analyzed by uclust 
algorithm against the NCBI-NT database (https://ftp.ncbi.nlm.nih.gov/ 

blast/db/). The raw sequence data were deposited in the public NCBI 
database (http://www.ncbi.nlm.nih.gov/) under the BioProject ID: 
PRJNA1185113 (Bacteria), PRJNA1185154 (Archaea), PRJNA1185190 
(pmoA), and PRJNA1185433 (mcrA).

2.4. Community structure, co-occurrence network, and community 
assembly

Non-metric multi-dimensional scaling (NMDS) ordination, the Wil-
coxon test, and analysis of similarities (ANOSIM) were used to investi-
gate differences in soil microbial communities (bacteria, archaea, pmoA, 
and mcrA) between BS, RS, and RP. The community structure between 
samples were analyzed using the Bray-Curtis similarity of soil microbial 
ASVs abundance. These analyses were conducted using “vegan” 
(Oksanen et al., 2024) and “ggsignif” (Ahlmann-Eltze and Patil, 2021) R 
packages.

Network analysis has proven helpful in deciphering complex mi-
crobial interaction patterns. Our study focused on two composite net-
works that included comprehensive microbial communities 
(bacteria&archaea) and functional microbial communities (pmoA&m-
crA), and rather than a single taxonomic network. Thus, bacter-
ia&archaea and pmoA&mcrA internetworks were constructed for each 
habitat, and the sub-network topology properties were extracted to 
describe soil microbial network complexity. To determine the co- 
occurrence patterns of microorganisms in BS, RS, and RP, six networks 
(three communities of bacteria&archaea and three communities of 
pmoA&mcrA) were constructed. Microbial phylotypes with relative 
abundances less than 0.01 % were excluded from the analysis. Then, the 
bacteria&archaea and pmoA&mcrA ASVs were merged into an abun-
dance table, respectively. Pairwise Spearman correlations between ASVs 
were calculated, and P values were adjusted by the Benjamini and 
Hochberg false discovery rate (FDR) test (Benjamini and Hochberg, 
1995). The cutoff of the FDR-adjusted P-values was 0.05, and Spearman 
correlations with a coefficient of less than 0.60 were also removed. Only 
robust (|r| > 0.60) and statistically significant (P < 0.05) correlations 
were incorporated into the network analyses. The analysis was con-
ducted using “WGCNA” R package to calculate the Spearman correlation 
matrix between ASVs for different habitats (Langfelder and Horvath, 
2008). The network topological properties used in this study included 
the Nodes number, Average weight degree, Mean distance, Betweenness 
centralization, Network density, and Clustering coefficient. Because 
these topological properties were tightly correlated, we used the first 
and second components (Network.PC1 and Network.PC2) of the six 
selected topological properties to denote the network complexity (Wang 
et al., 2023).

Stochasticity is a fundamental driver of community structure, espe-
cially in surface soils (Mo et al., 2024). To determine the potential 
importance of stochastic processes on community assembly, we used a 
neutral community model to predict the relationship between ASV 
detection frequency and their relative abundance across the wider 
metacommunity (Sloan et al., 2006), applying nonlinear least-squares 
(NLS) to generate the best fit between the frequency of ASVs occur-
rence and their relative abundance.

2.5. Piecewise structural equation modeling

The piecewise structural equation modeling (piecewiseSEM) was 
employed to explore the underlying influences of biotic and abiotic 
factors on SOC between BS and RS. The piecewiseSEM in our study is to 
split the complex model into several independent linear mixed-effect 
models for local estimation (Table S3). The use of piecewiseSEM is 
particularly useful in large-scale correlative studies due to its ability to 
partition the causal influences among multiple variables and separate 
the direct and indirect effects of each variable (Lefcheck, 2016; Tian 
et al., 2021; Liu et al., 2022).

We first constructed an a priori conceptual model following previous 
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research (Delgado-Baquerizo et al., 2017; Tian et al., 2021; Liu et al., 
2022). Several composite variables were set, including climatic factors 
(composed of MAT, MAP, SWE, Srad, T/ET, T, and ET), soil physical 
properties (composed of SWC, SBD, and soil texture), soil chemical 
properties (composed of TN, TP, TN/TP, AP, TK, AK, NH4

+-N, NO3
− -N, 

and pH), soil metallic elements (composed of Ca, Mg, Mn, Cu, Cd, Cr, 
AMn, ACu, ACd, ACr, ExCa, and ExMg), agricultural management 
(composed of fertilization, TCSA, GAP, TPAM, and pesticide usage), and 
soil microbial community properties (composed of diversity, NMDS1, 
NMDS2, Network.PC1, and Network.PC2 of bacteria, archaea, bacter-
ia&archaea, pmoA, mcrA, and pmoA&mcrA). Particularly, we extracted 
the principal components for the six sub-network topology properties 
(Nodes number, Average weight degree, Mean distance, Betweenness 
centralization, Network density, and Clustering coefficient) to obtain 
Network.PC1 and Network.PC2 as network complexity of soil microbial 
communities (Wang et al., 2023). We calculated the first and second axis 
scores of NMDS (NMDS1 and NMDS2) as soil microbial community 
structure, respectively. Then, based on the a priori model, we gradually 
modified and constructed the final model (Fig. 9 and Table S3).

Fisher’s C test (when 0.05 < P < 1.00) was used to judge the good-
ness of the modeling results and then stepwise modified our models 
according to the pathway significance (P < 0.05) and the goodness of the 
model (Tian et al., 2021; Liu et al., 2022). The variance inflation factor 
(VIF) for biotic and abiotic factors included in the piecewiseSEM were 
all less than 10 (O’brien, 2007). We used conditional R2 (R2

C) and mar-
ginal R2 (R2

M) to evaluate how the built models explain the variance of 
composite variables to SOC. The R2

C and R2
M represent the proportion of 

variance explained by all composite variables with and without ac-
counting for random effects of the “sampling site”, respectively 
(Nakagawa and Schielzeth, 2013). These analyses were conducted using 
“piecewiseSEM” (Lefcheck, 2016), “nlme” (Pinheiro et al., 2024), and 
“lme4” (Bates et al., 2015) R packages.

2.6. Statistical analyses

All statistical analyses and figures were done using the R software 
(version 4.4.1) (R Core Team, 2024). Shannon, simpson, pielou, and 
richness were performed using the “picante” (Kembel et al., 2010) and 
“vegan” (Oksanen et al., 2024) R packages. The differences in SOC, main 
abiotic factors, Shannon diversity of soil microbial communities and 
sub-network topological properties in different habitats were tested 
using Wilcoxon test, and the differences in soil microbial dominant taxa 
in different habitats were tested using Student’s t-test. Homogeneity of 
variances was tested by Levene’s test, and the normal distribution of 
residues was tested by the Shapiro test.

Random forest was used to quantify the relative importance of each 
factor on SOC between BS and RS. In the random forest model, the 
number of decision trees (ntree) is set as 1000, and the number of cross- 
validation folds is 15. Random forest analysis was performed using the 
“randomForest” (Liaw and Wiener, 2002), “rfPermute” (Archer, 2023), 
and “caret” (Kuhn, 2008) R packages. Spearman’s rank correlation 
analysis was used to evaluate their relationships between SOC and top25 
influencing factors identified by random forest importance analysis. 
Spearman’s rank correlation analysis was performed using the “Hmisc” 
R package (Harrell, 2025). The data were Z-score normalised before 
analysis to remove the effect of the dimension using the “vegan” package 
(Oksanen et al., 2024). We used the ggplot2 (Wickham, 2016), ggdist 
(Kay, 2024), maptools (Bivand and Lewin-Koh, 2023), and corrplot (Wei 
and Simko, 2021) R packages for graphing.

3. Results

3.1. Differences of SOC and soil properties between BS and RS

Significant spatial heterogeneity was observed in SOC and soil 
physicochemical properties across the study area (Fig. S1), with distinct 

distribution patterns between BS and RS. Specifically, TP and pH 
demonstrated north-to-south decreasing gradients in both soil com-
partments (Fig. S1). Comparative analysis revealed pronounced differ-
ences between BS and RS: SOC (BS: 11.18 ± 4.53 g/kg; RS: 17.84 ±
7.32 g/kg), TN, TN/TP, AP, NH4

+-N, SWC, ACu, ACd, and AMn were 
elevated in RS, whereas TP, AK, and ExMg exhibited inverse trends 
(Fig. 2; Wilcoxon test, P < 0.05).

3.2. Divergence of SOC content across main soil property gradients 
between BS and RS

The SOC in BS and RS increased significantly with the increase of TN, 
TN/TP, SWC, and ACd (Fig. 3; P < 0.01). Specifically in BS, SOC accu-
mulation was further mediated by NH4

+-N and ACu levels. Conversely, 
the SOC in BS decreased significantly with the increase of pH and SBD 
(Fig. 3a). The SOC in RS also decreased significantly with the increase of 
SBD (Fig. 3b; P < 0.01), though without significant pH-mediated 
regulation.

3.3. Soil microbial community composition, diversity, structure, and sub- 
network topological properties between BS, RS, and RP

We analyzed the relative abundances of the top12 dominant taxa and 
differences in top8 dominant taxa of bacteria, archaea, pmoA, and mcrA 
at the phylum, order, genus, and genus level in BS, RS, and RP, 
respectively (Fig. 4). The results showed that the top8 dominant taxa 
had significant differences between BS, RS, and RP (Fig. 4; Student’s t- 
test, P < 0.05). The relative abundances of biomarkers also showed 
significant differences in BS, RS, and RP (Figs. S2 and S3; Linear 
discriminant analysis, P < 0.05).

The Shannon diversity of bacteria and pmoA showed significant 
differences between BS, RS, and RP (Fig. 5a; Wilcoxon test, P < 0.05). 
The Shannon diversity of archaea showed a significant difference be-
tween BS and RP (Fig. 5a; Wilcoxon test, P < 0.05). Especially, the 
Shannon diversity of all microbial communities in RS was generally 
higher than that in BS (Fig. 5a).

Habitat-specific divergence emerged in the significant associations 
between microbial dominant taxa and SOC (Fig. 5b). Interestingly, 
Methylocystis in RS and RP showed a significant synergistic positive ef-
fect on SOC in RS (Fig. 5b). The Nitrospirota (R = 0.49, P < 0.01) and 
Thermococcales (R = 0.39, P < 0.05) in BS were significantly positively 
correlated with SOC in BS. The Firmicutes (R = − 0.36, P < 0.05) in BS 
was significantly negatively correlated with SOC in BS. The Chloroflexi 
(R = 0.45, P < 0.05), Methylocystis (R = 0.40, P < 0.05), and Candidatus 
Methanoperedens (R = 0.58, P < 0.001) in RS were significantly posi-
tively correlated with SOC in RS. The Proteobacteria (R = − 0.50, P <
0.01) in RS was significantly negatively correlated with SOC in RS. The 
Nitrosopumilales (R = 0.41, P < 0.05) and Methylocystis (R = 0.48, P <
0.01) in RP were significantly positively correlated with SOC in RS. The 
Halobacteriales (R = − 0.40, P < 0.05), Methylomonas (R = − 0.45, P <
0.01), and Methylomicrobium (R = − 0.54, P < 0.01) in RP were signifi-
cantly negatively correlated with SOC in RS (Fig. 5b).

NMDS ordination and Wilcoxon tests showed that community 
structure of bacteria differed significantly between RP and RS, as well as 
between RP and BS (Fig. 6a; Wilcoxon test, P < 0.05). The community 
structure of archaea and pmoA differed significantly between BS, RS, 
and RP (Fig. 6b and c; Wilcoxon test, P < 0.05). While the community 
structure of mcrA did not differ significantly between BS, RS, and RP 
(Fig. 6d; Wilcoxon test, P > 0.05). Analysis of similarities (ANOSIM) 
demonstrated distinct differences in bacteria (R = 0.44, P = 0.001), 
archaea (R = 0.43, P = 0.001), pmoA (R = 0.25, P = 0.001), and mcrA 
(R = 0.07, P = 0.003) between BS, RS, and RP (Fig. 6).

Network topology analysis revealed enhanced co-occurrence 
complexity in RS (Fig. 7 and S4). For bacteria&archaea and pmoA&m-
crA, the Network density, Average weight degree, and Clustering coef-
ficient in RS were higher than those in BS and RP (Fig. 7). For 
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bacteria&archaea, the Nodes number, Network density, and Clustering 
coefficient were markedly different between BS, RS, and RP (Fig. 7a; 
Wilcoxon test, P < 0.05). For pmoA&mcrA, the microbial sub-network 
topological properties except Nodes number were markedly different 
between BS, RS, and RP (Fig. 7b; Wilcoxon test, P < 0.05).

The neutral community model results indicated that relative 
contribution of stochastic processes increased gradually of pmoA&mcrA 
from BS to RS, then to RP (Fig. S5b). The construction of bacter-
ia&archaea and pmoA&mcrA was more influenced by stochastic pro-
cesses and less by deterministic processes in RP (Fig. S5). Although the 
diffusion of microorganisms in RP was more restricted compared to RS, 
the distance between RS and RP was closer, and the microorganisms in 

RP were sufficient to diffuse into RS, which had a certain impact on the 
microorganisms and SOC in RS. Therefore, the microorganisms in RP 
were included in the RS analysis to analyze the impact of microorgan-
isms on SOC in RS comprehensively.

3.4. Quantifying main influencing factors for SOC between BS and RS via 
random forest importance analysis

It showed that soil physical (SBD, SWC) and chemical properties (TN, 
SOC/TP, TN/TP) were the most important variables of SOC between BS 
and RS according to the random forest importance (Fig. 8). The first 
ranking factor of SOC in BS was SBD (Fig. 8a), while in RS was TN 

Fig. 2. Differences in SOC, soil physicochemical properties, and metallic elements between bulk (BS) and rhizosphere soils (RS). The differences were tested using 
Wilcoxon test (*: P < 0.05, **: P < 0.01, ***: P < 0.001).
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(Fig. 8b). The overall impact of soil microbial community properties on 
SOC was important in BS (Fig. 8a), accounting for 25.65 % within the 
top25 influencing factors, second only to soil physical (27.46 %) and 
chemical (28.14 %) properties (Table S1). The mcrA NMDS2, Bacteria 
NMDS1, and Bacteria Nitrospirota in BS contributed significantly more to 
SOC in BS (P < 0.05). The overall impact of soil metallic elements on 
SOC was also important in BS, accounting for 11.52 % within the top25 
influencing factors (Fig. 8a and Table S1).

Soil microorganisms in RP had an important influence on SOC in RS 
(Fig. 8b). The overall impact of soil microbial community properties on 
SOC was more important in RS (Fig. 8b and Table S2) compared to BS 
(Fig. 8a), accounting for 39.56 % within the top25 influencing factors, 

second only to soil chemical properties (43.33 %). The RP pmoA Rich-
ness, RP pmoA&mcrA Richness, RS Archaea Network.PC2, RS Archaea 
Halobacteriales, RS mcrA Candidatus Methanoplasma, RS pmoA Candi-
datus Methylumidiphilus, RS pmoA&mcrA Network.PC2, and RP pmoA 
NMDS1 contributed significantly more to SOC in RS compared to BS. But 
soil physical properties (10.06 %) and soil metallic elements (1.97 %) 
contributed less in RS (Fig. 8b and Table S2). In particular, the com-
munity of pmoA&mcrA in RS and RP attributed dominant influence on 
SOC in RS compared to bacteria&archaea (Fig. 8b), while the commu-
nity of bacteria&archaea in BS attributed dominant influence on SOC in 
BS compared to pmoA&mcrA (Fig. 8a).

Correlation analysis showed the TN, SWC, SOC/TP, TN/TP, ACu, 

Fig. 3. SOC content diverges along physicochemical properties and metallic element gradients between (a) bulk (BS) and (b) rhizosphere soils (RS). The solid line 
represents the trends, and the shaded area represents the standard error of the estimate. TN/TP, TN to TP ratio. *: P < 0.05, **: P < 0.01, ***: P < 0.001.
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Bacteria Nitrospirota, ACd, pmoA Nodes number, and mcrA Nodes 
number in BS were significantly positively correlated with SOC in BS, 
and SBD was significantly negatively correlated with SOC (Fig. 8a). The 
TN, SOC/TP, SWC, SOC/TN, TN/TP, TWI, RS mcrA Candidatus Meth-
anoperedens, and RS mcrA Methanofollis were significantly positively 
correlated with SOC in RS, and SBD was also significantly negatively 
correlated with SOC (Fig. 8b). The RP pmoA Methylocystis was signifi-
cantly positively correlated with SOC in RS, and RP pmoA Richness and 
RP pmoA&mcrA Richness were significantly negatively correlated with 
SOC in RS (Fig. 8b).

3.5. Decoupling direct and indirect biotic-abiotic drivers of SOC through 
piecewise structural equation modeling between BS and RS

The piecewiseSEM showed that 88 % and 92 % of SOC variations 
could be explained by the selected variables in BS and RS, respectively 
(Fig. 9). SOC was directly significantly influenced by soil physical 
properties (i.e., SWC and SBD; R2

M = 0.10, P < 0.001), chemical prop-
erties (i.e., TN and TN/TP; R2

M = 0.37, P < 0.01), and metallic elements 
(i.e., Mg, Mn, Cd, ACu, and ExCa; R2

M = 0.59, P < 0.05) in BS (Fig. 9a and 
Table S4). The direct effects of soil physical (standardized direct effect 

was 0.36) and chemical (standardized direct effect was 0.36) properties 
were the largest in BS. In terms of the indirect effect in BS, soil physical 
properties had a great positive indirect effect (standardized indirect 
effect was 0.39) on SOC through its positive effect on soil chemical 
properties, metallic elements, and microbial community properties. Soil 
chemical properties had a positive indirect effect (standardized indirect 
effect was 0.17) on SOC mainly through its positive effect on soil 
metallic elements. The indirect effects of climatic factors (standardized 
indirect effect was 0.28) and agricultural management (standardized 
indirect effect was 0.26) on SOC were also great (Fig. 9a).

SOC was directly significantly influenced by soil chemical properties 
(i.e., TN, AK, NH4

+-N, and pH; R2
M = 0.70, P < 0.001), metallic elements 

(i.e., ACu, ACd, ACr, and ExMg; R2
M = 0.43, P < 0.05) and microbial 

community properties (i.e., RS Bacteria Simpson, RS pmoA&mcrA 
Richness, RS Bacteria NMDS2, RS pmoA&mcrA Network.PC2, RP 
pmoA&mcrA Richness, RP pmoA&mcrA NMDS2, and RP pmoA&mcrA 
Network.PC2; R2

M = 0.58, P < 0.001) in RS (Fig. 9b and Table S5). The 
direct effect of soil chemical properties (standardized direct effect was 
0.74) was the largest in RS, followed by soil microbial community 
properties (standardized direct effect was 0.33). Soil microbial com-
munities, especially functional microbial communities (pmoA&mcrA) in 

Fig. 4. Differences in soil microbial community composition in bulk (BS), rhizosphere (RS), and rhizoplane soils (RP). (a) Relative abundance of dominant phyla of 
bacteria in top12 and differences in top8 dominant phyla; (b) Relative abundance of dominant order of archaea in top12 and differences in top8 dominant order; (c) 
Relative abundance of dominant genus of methanotrophs (pmoA) in top12 and differences in top8 dominant genus; (d) Relative abundance of dominant genus of 
methanogens (mcrA) in top12 and differences in top8 dominant genus. Different lowercases letters within each column in the same sub-figure represent significant 
differences between BS, RS, and RP (Student’s t-test, P < 0.05).

J. Liu et al.                                                                                                                                                                                                                                       Journal of Environmental Management 389 (2025) 126179 

8 



RS had a significant positive direct effect on SOC in RS (Fig. 9b and 
Table S5). Conversely, the direct effect of soil microbial communities on 
SOC in BS was insignificant (Fig. 9a and Table S4). In terms of the in-
direct effect in RS, soil physical properties had a great positive indirect 
effect (standardized indirect effect was 0.66) on SOC mainly through its 
positive effect on soil chemical properties. Soil chemical properties had 
a positive indirect effect (standardized indirect effect was 0.21) on SOC 
mainly through its positive effect on soil microbial communities 
(Fig. 9b).

Soil methane microbial community properties (RP pmoA&mcrA 
Richness, NMDS2, and Network.PC2) in RP were also important influ-
encing factors on SOC in RS (Fig. 9b). To conclude, climatic factors and 
agricultural management had a marginal direct effect on SOC, however, 
they markedly indirectly influenced SOC by influencing other factors in 
BS and RS (Fig. 9). Soil chemical properties in BS and RS positively 
influenced SOC. Soil metallic elements positively influenced SOC in BS 
(Fig. 9a), but negatively influenced SOC in RS (Fig. 9b). The effect of 
abiotic factors on soil microbial community properties further signifi-
cantly influenced SOC in RS (Fig. 9b). In addition, there were marked 
differences in the observed variables retained in piecewiseSEM in soil 
chemical properties, metallic elements, and microbial community 
properties between BS and RS (Fig. 9).

4. Discussion

4.1. Differences in SOC, biotic, and abiotic factors between BS and RS of 
rice paddies

In this study, we observed significant differences in SOC, main 
abiotic factors (soil physical properties, chemical properties, and metal 
elements), and soil microbial community properties between BS and RS 
of rice paddies at a regional scale. In terms of abiotic factors, the TN, TN/ 
TP, AP, NH4

+-N, ACu, ACd, and AMn in RS were significantly higher than 
those in BS. RS is a biological hotspot, characterized by physical and 
chemical properties that differ substantially from the surrounding BS 
(Kuzyakov, 2010). One reason is that root exudation of 
low-molecular-weight organic acids in RS can fundamentally alter the 
biogeochemistry of this environment (Fan et al., 2017; Zhao et al., 
2022). We found the SOC content in RS was significantly higher than 
that in BS. This difference is related to rhizosphere secretions (Fan et al., 
2021; Wei et al., 2022), key microbial taxa (e.g., Chloroflexi, Methyl-
ocystis, Candidatus Methanoperedens; Figs. S2 and S3) (Shih et al., 2017) 
and the increased amorphous iron oxide pool in RS that could bind 
organic carbon in plant roots (Arredondo et al., 2019). Furthermore, RS 
sustained a greater capacity for microbial necromass contribution to the 
SOC pool than BS (Wang et al., 2025).

Our study found that the diversity of microbial communities in RS 
was higher than that in BS. A previous study also showed that the mean 

Fig. 5. Differences in diversity of soil microbial communities and correlation analysis between microbial dominant taxa and SOC in bulk (BS), rhizosphere (RS), and 
rhizoplane soils (RP). (a) Differences in Shannon diversity of soil microbial communities between BS, RS, and RP was tested using Wilcoxon test (*: P < 0.05, **: P <
0.01, ***: P < 0.001, NS.: not significant). (b) The correlation analysis between the top10 microbial dominant taxa and SOC (*: P < 0.05, **: P < 0.01, ***: P <
0.001). Among them, BS Taxa → BS SOC represents the correlation analysis between the top10 microbial dominant taxa in BS and SOC in BS; RS Taxa → RS SOC 
represents the correlation analysis between the top10 microbial dominant taxa in RS and SOC in RS; RP Taxa → RS SOC represents the correlation analysis between 
the top10 microbial dominant taxa in RP and SOC in RS.
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diversity of microbial communities in RS was higher than that in BS of 
rice paddies (Edwards et al., 2015). We found that the community 
structure of archaea and pmoA differed significantly between BS and RS 
and the network complexity (including Clustering coefficient, Network 
density, and Average weight degree) of microbial communities in RS 
was higher than that in BS (Fig. 7 and S4). A previous study on bacterial 
communities in rice paddies showed that the microbial co-network and 
community structure differed markedly between BS and RS (Tian et al., 
2022). The main reason is that growing plant roots changes the chemical 
identity, quantity and diversity of resources available to soil microbial 
communities (Zolla et al., 2013; Zhao et al., 2022), through processes of 
both addition and removal of diverse chemical compounds from soil 
(Jones et al., 2004). In turn, this altered resource availability changes 
the selective pressures experienced by soil microbes. The outcome of 
these complex processes is the development of microbial communities in 
RS that differ markedly from the source communities in BS (Minz et al., 
2013). Microbial community structural differences between BS and RS 
might also be attributable to microbial interactions involving both 
competition and cooperation (Edwards et al., 2015). Moreover, micro-
organisms in RS played a part in shaping their selective environment by 
modulating plant root exudation (Bakker et al., 2015).

4.2. Regulatory mechanisms of biotic and abiotic factors on SOC between 
BS and RS of rice paddies

Our study based on 32 samples found significant differences in reg-
ulatory mechanisms of biotic and abiotic factors on SOC between BS and 
RS of rice paddies at a regional scale. In the ranking of influencing 
factors in BS, soil physical and chemical properties had the largest direct 
effect on SOC, followed by metallic elements. Soil chemical properties 
had the largest direct effect on SOC in RS, followed by microbial com-
munity properties and metallic elements. The positive relationships 
between SOC and soil physicochemical properties (N, C/N, N/P, AP, and 
SWC) found in our study are consistent with the previous studies 
(Sahrawat, 2004; Wang et al., 2023). Some scholars found that those 
properties were positively correlated with SOC due to nutrient suffi-
ciency could increase crop biomass, allowing more plant-derived carbon 
to enter the soil (Ni et al., 2021; Hu et al., 2022), thereby facilitating SOC 
increases. Furthermore, a study found that precipitation, SWC, AP, and 
microbial network complexity contributed significantly to SOC in BS 
(Wang et al., 2023). In RS, a study elucidated that rhizodeposits pro-
moted SOC formation and accumulation via microbial biomass and 
necromass (Luo et al., 2021). Another study also found rhizodeposition 

Fig. 6. Differences in soil microbial community structure in bulk (BS), rhizosphere (RS), and rhizoplane soils (RP). (a) Bacteria; (b) Archaea; (c) methanotrophs 
(pmoA); (d) methanogens (mcrA). Differences in NMDS1 or NMDS2 of soil microbial communities between BS, RS, and RP were tested using Wilcoxon test (*: P <
0.05, **: P < 0.01, ***: P < 0.001, NS.: not significant).
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was highly efficient carbon sources for mineral-associated organic car-
bon formation and then promote the accumulation of SOC in RS 
(Villarino et al., 2021).

Interestingly, we found that soil metallic elements had a significant 
positive effect on SOC in BS, but a negative effect on SOC in RS. The 
mineralization of organic carbon can be inhibited in BS due to the 
chemical protective effect of ExCa, Mg, Mn, etc. on organic carbon, 
thereby promoting SOC accumulation in BS (Moore et al., 2023; Xiao 
et al., 2025). Furthermore, fertilization may increase mineral avail-
ability and improve soil aggregation, and affect the bioavailability of soil 
metallic elements in BS of rice paddies (Huang et al., 2018). This also 
confirmed our study that agricultural management positively affected 
soil metallic elements by affecting soil physicochemical properties, 
indirectly promoting SOC accumulation in BS. Although soil microor-
ganisms are highly active in RS, the protective effects of Ca, Mg, and 
other substances on SOC may reduce the microbial carbon use effi-
ciency, thereby inhibiting SOC accumulation (Dai et al., 2023; Pei et al., 
2024). Rhizodeposition and root chemistry also may influence SOC 
interaction with minerals and metals (Poirier et al., 2018). In addition, 
iron manganese oxides may promote electron transfer in methanotrophs 
and enhance the stability of carbon mineral composites by adsorbing 
extracellular polymeric substances, thereby promoting SOC accumula-
tion in RS (Ouboter et al., 2024). The above research confirmed that soil 
metallic elements indirectly promoted SOC content in RS by regulating 
microbial community properties in our study. During the formation and 
decomposition of SOC, microbial redox transformations of Mn and Cr 

determine their solubility and bioavailability (Philippot et al., 2024). 
Therefore, the negative effects of metallic elements on SOC in RS can be 
offset by adjusting the abundance of relevant microorganisms. More-
over, the toxicity or availability of Mn and Cr as electron acceptors or 
donors thus influences the ecological responses of soil microorganisms 
(Philippot et al., 2024). Meanwhile, changes in Cr concentration can 
also pose potential risks to the soil environment, affecting soil quality 
and health. For example, the interaction between Cd and Cu may 
exacerbate the problem of antibiotic resistance genes entering the food 
chain, which can have severe consequences on the environment and the 
wellness of humankind (Pan et al., 2024).

We found that microbial community properties in RS and RP 
contributed markedly to SOC and had a significant positive effect on 
SOC in RS. This may indicate that soil microbial communities in RS and 
RP promoted SOC accumulation in RS. In RS, where oxygen and root 
exudates are abundant, methanotrophic activity is generally higher, 
leading to enhanced carbon cycling and potentially promoting SOC (Fan 
et al., 2021; Wei et al., 2022). However, methanogenic activity is usually 
suppressed by the availability of oxygen and the competitive presence of 
methanotrophs in RS (Rajendran et al., 2024). In contrast, the activity of 
methanotrophs in BS, away from plant roots, is often lower due to 
limited oxygen availability and nutrients (Edwards et al., 2015), which 
may cause the insignificant influence of microbial communities on SOC 
in BS. Type I/II methanotrophs convert methane to CO2 via particulate 
methane monooxygenase while assimilating carbon via the ribulose 
monophosphate or serine cycle under aerobic conditions (Zheng et al., 

Fig. 7. Differences of sub-network topology properties for bacteria&archaea and pmoA&mcrA between bulk (BS), rhizosphere (RS), and rhizoplane soils (RP). pmoA, 
methanotrophs; mcrA, methanogens. The P value is from a Wilcoxon test (*: P < 0.05, **: P < 0.01, ***: P < 0.001, NS.: not significant).

J. Liu et al.                                                                                                                                                                                                                                       Journal of Environmental Management 389 (2025) 126179 

11 



2024a). This validated the results of this study that type II methano-
trophs (e.g., Methylocystis) in RP had a pronounced positive contribution 
to SOC in RS. Microorganisms consumed oxygen when degrading root 
exudates, resulting in brief or sustained hypoxic conditions in RP, 
leading to an increase in the abundance of methanogens and promoting 
SOC consumption (Qian et al., 2023). In our study, the higher abun-
dance and diversity of methanotrophs in RS, and the higher rate of 
methane oxidation and carbon assimilation could offset the SOC loss 
caused by methane produced by methanogens in RP. Higher network 
complexity of methane microbial communities in RS and community 
structure in RP might have a positive effect on SOC in RS. Similarly, a 
previous study found that microbial network complexity had a signifi-
cant positive effect on SOC in rice paddies (Wang et al., 2023). Although 
the diffusion of microorganisms in RP was more restricted compared to 
RS, the distance between RS and RP was closer. The microorganisms in 
RP were sufficient to diffuse into RS, which had a certain impact on the 
microorganisms and SOC in RS. Furthermore, the root exudation was 
impacted by soil properties such as nutrient availability or deficiency 
(Lu et al., 1999), and was sensitive to the microorganisms that colonize 
the RP, thereby affecting SOC in RS (De-la-Pena et al., 2008).

Our results also demonstrated that the indirect effects of climatic 
factors, soil physical properties, and agricultural management were 
larger than their direct effects on SOC between BS and RS, reflecting the 
importance of the interactions between biotic and abiotic factors. 
Furthermore, soil physical properties had a great positive indirect effect 
on SOC in BS through its positive effect on soil chemical properties, 
metallic elements, and microbial community properties, but a great 
positive indirect effect on SOC in RS mainly through its positive effect on 
soil chemical properties. Similarly, a study on methane emissions from a 
paddy field showed that soil abiotic factors could regulate methano-
trophic community composition and atmospheric methane uptake in 
paddy soils, thereby promoting SOC accumulation (Zheng et al., 2024b). 
This implies that the sensitivity of SOC to climate change may be buff-
ered by changes in soil properties and soil microbial communities (Ni 
et al., 2021; Li et al., 2024).

We found that agricultural management, such as fertilization, TPAM 

and GAP, had a positive indirect effect on SOC through its positive effect 
on physical and chemical properties between BS and RS. Lin et al. (2025)
reported that fertilization could increase SOC in BS by augmenting the 
proportion of macroaggregate and carbon concentration in soil aggre-
gate sizes. In addition, agricultural management had a significant pos-
itive effect on soil microbial communities in BS, which further had an 
important influence on SOC. However, agricultural management did not 
have a significant effect on soil microbial communities in RS. This may 
be related to the RS microenvironment (Minz et al., 2013; Wei et al., 
2022), paddy root exudates (Zolla et al., 2013), and the main functional 
microbial communities (Edwards et al., 2015; Rajendran et al., 2024) 
and carbon-acquisition enzyme activities (Chen et al., 2023) in RS and 
RP. A global meta-analysis on enzyme activities supported this point, as 
they found that the nitrogen sensitivity of carbon-acquisition enzyme 
(β-1,4-glucosidase, phenol oxidase, and peroxidase) activities in RS was 
significantly lower than that of BS (Chen et al., 2023). The response of 
soil microbial communities to fertilization and other agricultural man-
agement is relatively weak due to the high nutrient content in RS.

4.3. Implications, limitations, and future directions

Our study fills a gap in the regulatory mechanisms of SOC in different 
habitats of rice paddies at a regional scale. The divergent regulatory 
mechanisms of SOC storage between BS and RS imply that different 
habitats should be considered when studying soil carbon cycling pro-
cesses in rice paddies. Furthermore, when optimizing agricultural 
management (e.g., fertilization) aiming at carbon accumulation, syner-
gistic consideration of soil properties, climate, and soil microbial com-
munities is imperative.

There are some limitations of our study. First, county-level agricul-
tural management data (e.g., fertilization, TCSA, GAP, TPAM, and 
pesticide usage) derived from the Jiangsu, Shanghai, and Zhejiang Sta-
tistical Yearbook 2021 may lack site-specific resolution for precisely 
delineating management effects on SOC at the plot scale. Future studies 
would benefit from higher-resolution spatial datasets to elucidate link-
ages between agricultural interventions and SOC accumulation 

Fig. 8. Relative importance of biotic and abiotic factors on SOC between (a) bulk (BS) and (b) rhizosphere soils (RS). MSE, percentage of increase of mean square 
error (%). Bars marked with “*”, “**”, and “***” represent variables that are significant at the <0.05, <0.01 and < 0.001 level, respectively. R2 and P values are the 
variance explained (i.e., goodness of fit) and significance of the random forest model. Spearman R value is the correlation between SOC and the top25 influencing 
factors. SOC/TP, SOC to TP ratio; SOC/TN, SOC to TN ratio; TN/TP, TN to TP ratio; NMDS1, first axis scores of NMDS; NMDS2, second axis scores of NMDS; Network. 
PC1, first principal component extracted using sub-network topological properties; Network.PC2, second principal component extracted using sub-network topo-
logical properties; pmoA, methanotrophs; mcrA, methanogens; AWD, average weight degree.

J. Liu et al.                                                                                                                                                                                                                                       Journal of Environmental Management 389 (2025) 126179 

12 



mechanisms. Second, mechanism experiments should be synergistically 
integrated with large-scale analysis, as exemplified in our study, to 
advance understanding of soil carbon transformation processes.

5. Conclusions

We employed the effects of biotic and abiotic factors on driving SOC 
storage at a regional scale using random forest model and piece-
wiseSEM, and revealed the regulatory mechanisms on SOC storage be-
tween BS and RS of rice paddies differed markedly. Soil physical and 
chemical properties had the largest direct effect on SOC in BS, while soil 
chemical properties had the largest direct effect on SOC in RS. Microbial 
community properties in RS exhibited a more significant positive direct 

effect (the second largest direct effect) on SOC compared to those in BS. 
Notably, microbial communities in RP had an important influence on the 
SOC content in RS. Soil available metal elements and methane microbial 
community properties exhibited a more pronounced effect on SOC in RS 
than in BS. Interestingly, soil metallic elements positively influenced 
SOC in BS, but negatively influenced SOC in RS. Furthermore, the in-
direct effects of climatic factors, soil physical properties, and agricul-
tural management on SOC exceeded their direct effects in BS or RS. Soil 
physical properties had a positive indirect effect on SOC in BS through 
its effect on soil chemical properties, metallic elements, and microbial 
community properties, but a positive indirect effect on SOC in RS mainly 
through its effect on soil chemical properties. Moreover, agricultural 
management influenced SOC indirectly through soil physical and 

Fig. 9. Piecewise structural equation modeling (piecewiseSEM) accounting for the direct and indirect effects of biotic and abiotic factors on SOC between (a) bulk 
(BS) and (b) rhizosphere soils (RS). The biotic and abiotic factors including climatic factors, physical properties, chemical properties, metallic elements, agricultural 
management, and microbial community properties. Numbers adjacent to arrows are path coefficients (partial regression) which represent the directly standardized 
effect size of the relationship. The standardized path coefficients in the paths are shown in blue if positive or in red if negative. Significant paths (P < 0.05) are 
represented by solid lines, and non-significant paths (P > 0.05) are represented by dashed lines in the figure. Numbers adjacent to measured variables are their 
coefficients with composite variables. Relationships between residual variables of measured predictors are not shown. Significance levels of each predictor are *P <
0.05, **P < 0.01, ***P < 0.001. Standardized effects (total, direct, and indirect effects) based on piecewiseSEM are shown in the figure on the right. df, degree of 
freedom; AIC, Akaike information criterion. NMDS1, first axis scores of NMDS; NMDS2, second axis scores of NMDS; Network.PC1, first principal component 
extracted using sub-network topological properties; Network.PC2, second principal component extracted using sub-network topological properties.
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chemical properties. In terms of the total effect, physical properties, 
chemical properties, and climate were the most influencing factors for 
SOC in BS, while chemical properties, physical properties, and microbial 
community properties were the most influencing factors for SOC in RS. 
Accordingly, deciphering the complex and divergent regulatory mech-
anisms of SOC storage in different habitats is vital for understanding 
microbe-driven ecological processes and functions in rice paddies. This 
study offers novel insights into the regulatory mechanisms of SOC 
storage in different habitats of rice paddies at a regional scale and pro-
vides valuable references for future soil carbon sequestration manage-
ment in rice paddies.
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Villarino, S.H., Pinto, P., Jackson, R.B., Piñeiro, G., 2021. Plant rhizodeposition: a key 
factor for soil organic matter formation in stable fractions. Sci. Adv. 7, eabd3176. 
https://doi.org/10.1126/sciadv.abd3176.

Wang, C., Wang, X., Zhang, Y., Morrissey, E., Liu, Y., Sun, L.F., Qu, L.R., Sang, C.P., 
Zhang, H., Li, G.C., Zhang, L.L., Fang, Y.T., 2023. Integrating microbial community 
properties, biomass and necromass to predict cropland soil organic carbon. ISME 
Commun. 3, 86. https://doi.org/10.1038/s43705-023-00300-1.

Wang, Q.T., Ding, J.X., Zhang, Z.L., Liang, C., Lambers, H., Zhu, B., Wang, D.G., Wang, J. 
P., Zhang, P.P., Li, N., Yin, H.J., 2025. Rhizosphere as a hotspot for microbial 
necromass deposition into the soil carbon pool. J. Ecol. 113, 168–179. https://doi. 
org/10.1111/1365-2745.14448.

Wang, X.X., Zhang, H.R., Cao, D., Wu, C.Y., Wang, X.T., Wei, L., Guo, B., Wang, S., 
Ding, J.N., Chen, H., Chen, J.P., Ge, T.D., Zhu, Z.K., 2024. Microbial carbon and 
phosphorus metabolism regulated by C: N: p stoichiometry stimulates organic 
carbon accumulation in agricultural soils. Soil Tillage Res. 242, 106152. https://doi. 
org/10.1016/j.still.2024.106152.

Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., Cribb, M., 2023. Ground-level gaseous 
pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal 
variations. Atmos. Chem. Phys. 23, 1511–1532. https://doi.org/10.5194/acp-23- 
1511-2023.

Wei, L., Zhu, Z.K., Razavi, B.S., Xiao, M.L., Dorodnikov, M., Fan, L.C., Yuan, H.Z., 
Yurtaev, A., Luo, Y., Cheng, W.G., Kuzyakov, Y., Wu, J.S., Ge, T.D., 2022. 
Visualization and quantification of carbon “rusty sink” by rice root iron plaque: 
mechanisms, functions, and global implications. Glob. Change Biol. 28, 6711–6727. 
https://doi.org/10.1111/gcb.16372.

Wei, T.Y., Simko, V., 2021. R package ’corrplot’: visualization of a Correlation Matrix, 
Version 0.95. https://github.com/taiyun/corrplot.

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New 
York. https://ggplot2.tidyverse.org. 

Wu, D., Wu, L., Liu, K.L., Shang, J.Y., Zhang, W.J., 2024a. Contrasting effets of iron 
oxides on soil organic carbon accumulation in paddy and upland fields under long- 
term fertilization. J. Environ. Manag. 369, 122286. https://doi.org/10.1016/j. 
jenvman.2024.122286.

Wu, H.W., Cui, H.L., Fu, C.X., Li, R., Qi, F.Y., Liu, Z.L., Yang, G., Xiao, K.Q., Qiao, M., 
2024b. Unveiling the crucial role of soil microorganisms in carbon cycling: a review. 
Sci. Total Environ. 909, 168627. https://doi.org/10.1016/j.scitotenv.2023.168627.

Wu, J.S., 2011. Carbon accumulation in paddy ecosystems in subtropical China: evidence 
from landscape studies. Eur. J. Soil Sci. 62, 29–34. https://doi.org/10.1111/j.1365- 
2389.2010.01325.x.

Xiao, K.Q., Zhao, M.Y., Moore, O., Zhao, Y., Li, X.N., Woulds, C., Babakhani, P., Mills, B. 
J.W., Homoky, W.B., Johnson, K., Tagliabue, A., Liang, C., Zhu, Y.G., Peacock, C., 
2025. Mineral carbon pump in the Earth system. Innovation 6, 100737. https://doi. 
org/10.1016/j.xinn.2024.100737.

Xin, J.J., Yan, L., Cai, H.G., 2024. Response of soil organic carbon to straw return in 
farmland soil in China: a meta-analysis. J. Environ. Manag. 359, 121051. https:// 
doi.org/10.1016/j.jenvman.2024.121051.

Zeng, K., Huang, X.C., Guo, J.J., Dai, C.S., He, C.T., Chen, H., Xin, G.R., 2024. Microbial- 
driven mechanisms for the effects of heavy metals on soil organic carbon storage: a 
global analysis. Environ. Int. 184, 108467. https://doi.org/10.1016/j. 
envint.2024.108467.

Zhao, X.C., Tian, P., Sun, Z.L., Liu, S.G., Wang, Q.K., Zeng, Z.Q., 2022. Rhizosphere 
effects on soil organic carbon processes in terrestrial ecosystems: a meta-analysis. 
Geoderma 412, 115739. https://doi.org/10.1016/j.geoderma.2022.115739.

Zheng, S.M., Deng, S.H., Ma, C., Xia, Y.H., Qiao, H., Zhao, J., Gao, W., Tu, Q., Zhang, Y. 
M., Rui, Y.C., Wu, J.S., Chen, X.B., 2024a. Type I methanotrophs dominated methane 
oxidation and assimilation in rice paddy fields by the consequence of niche 
differentiation. Biol. Fertil. Soils 60, 153–165. https://doi.org/10.1007/s00374-023- 
01773-x.

Zheng, Y., Cai, Y.F., Jia, Z.J., 2024b. Role of methanotrophic communities in 
atmospheric methane oxidation in paddy soils. Front. Microbiol. 15, 1481044. 
https://doi.org/10.3389/fmicb.2024.1481044.

Zolla, G., Bakker, M.G., Badri, D.V., Chaparro, J.M., Sheflin, A.M., Manter, D.K., 
Vivanco, J., 2013. Understanding root-microbiome interactions. Mol. Microb. Ecol. 
Rhizosphere 1, 743–754. https://doi.org/10.1002/9781118297674.ch70.

J. Liu et al.                                                                                                                                                                                                                                       Journal of Environmental Management 389 (2025) 126179 

16 

https://doi.org/10.1016/j.rsci.2023.10.003
https://doi.org/10.1016/j.rsci.2023.10.003
https://doi.org/10.1016/S0065-2113(03)81004-0
https://doi.org/10.1073/pnas.1710798114
https://doi.org/10.1073/pnas.1710798114
https://doi.org/10.1111/j.1462-2920.2005.00956.x
https://doi.org/10.1111/j.1462-2920.2005.00956.x
https://doi.org/10.1128/AEM.02858-08
https://doi.org/10.1016/j.apsoil.2021.104183
https://doi.org/10.1038/s43247-021-00324-2
https://doi.org/10.1038/s43247-021-00324-2
https://doi.org/10.1126/sciadv.abd3176
https://doi.org/10.1038/s43705-023-00300-1
https://doi.org/10.1111/1365-2745.14448
https://doi.org/10.1111/1365-2745.14448
https://doi.org/10.1016/j.still.2024.106152
https://doi.org/10.1016/j.still.2024.106152
https://doi.org/10.5194/acp-23-1511-2023
https://doi.org/10.5194/acp-23-1511-2023
https://doi.org/10.1111/gcb.16372
https://github.com/taiyun/corrplot
https://ggplot2.tidyverse.org
https://doi.org/10.1016/j.jenvman.2024.122286
https://doi.org/10.1016/j.jenvman.2024.122286
https://doi.org/10.1016/j.scitotenv.2023.168627
https://doi.org/10.1111/j.1365-2389.2010.01325.x
https://doi.org/10.1111/j.1365-2389.2010.01325.x
https://doi.org/10.1016/j.xinn.2024.100737
https://doi.org/10.1016/j.xinn.2024.100737
https://doi.org/10.1016/j.jenvman.2024.121051
https://doi.org/10.1016/j.jenvman.2024.121051
https://doi.org/10.1016/j.envint.2024.108467
https://doi.org/10.1016/j.envint.2024.108467
https://doi.org/10.1016/j.geoderma.2022.115739
https://doi.org/10.1007/s00374-023-01773-x
https://doi.org/10.1007/s00374-023-01773-x
https://doi.org/10.3389/fmicb.2024.1481044
https://doi.org/10.1002/9781118297674.ch70

	Divergent biotic-abiotic mechanisms of soil organic carbon storage between bulk and rhizosphere soils of rice paddies in th ...
	1 Introduction
	2 Materials and methods
	2.1 Study sites and soil sampling
	2.2 Soil physicochemical properties and metallic elements measurements, and other data collection on abiotic factors
	2.3 DNA extraction, illumina sequencing, and sequence processing
	2.4 Community structure, co-occurrence network, and community assembly
	2.5 Piecewise structural equation modeling
	2.6 Statistical analyses

	3 Results
	3.1 Differences of SOC and soil properties between BS and RS
	3.2 Divergence of SOC content across main soil property gradients between BS and RS
	3.3 Soil microbial community composition, diversity, structure, and sub-network topological properties between BS, RS, and RP
	3.4 Quantifying main influencing factors for SOC between BS and RS via random forest importance analysis
	3.5 Decoupling direct and indirect biotic-abiotic drivers of SOC through piecewise structural equation modeling between BS  ...

	4 Discussion
	4.1 Differences in SOC, biotic, and abiotic factors between BS and RS of rice paddies
	4.2 Regulatory mechanisms of biotic and abiotic factors on SOC between BS and RS of rice paddies
	4.3 Implications, limitations, and future directions

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Data availability
	References


