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Coastal wetlands are important blue carbon ecosystems that play a significant role in the global carbon
cycle. However, there is insufficient understanding of the variations in soil organic carbon (SOC) stocks
and the mechanisms driving these ecosystems. Here we analyze a comprehensive multi-source dataset of
SOC in topsoil (0e20 cm) and subsoil (20e100 cm) across 31 coastal wetlands in China to identify the
factors influencing their distribution. Structural equation models (SEMs) reveal that hydrology has the
greatest overall effect on SOC in both soil layers, followed by vegetation, soil properties, and climate.
Notably, the mechanisms driving SOC density differ between the two layers. In topsoil, vegetation type
and productivity directly impact carbon density as primary sources of carbon input, while hydrology,
primarily through seawater salinity, exerts the largest indirect influence. Conversely, in subsoil, hy-
drology has the strongest direct effect on SOC, with seawater salinity also influencing SOC indirectly
through soil and vegetation mediation. Soil properties, particularly pH, negatively affect carbon accu-
mulation, while climate influences SOC indirectly via its effects on vegetation and soil, with a dimin-
ishing impact at greater depths. Using Random Forest, we generate high-resolution maps (90 m � 90 m)
of topsoil and subsoil carbon density (R2 of 0.53 and 0.62, respectively), providing the most detailed
spatial distribution of SOC in Chinese coastal wetlands to date. Based on these maps, we estimate that
SOC storage to a depth of 1 m in Chinese coastal wetlands totals 74.58 ± 3.85 Tg C, with subsoil carbon
storage being 2.5 times greater than that in topsoil. These findings provide important insights into
mechanism on driving spatial pattern of blue carbon and effective ways to assess carbon status on a
national scale, thus contributing to the advancement of global blue carbon monitoring and management.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coastal wetlands, as crucial blue carbon ecosystems, store large
amounts of long-term soil carbon due to their high above- and
below-ground primary productivity and unique tidally inundated,
depositional environment for carbon sequestration [1,2]. There is
growing global interest in coastal wetlands as targets for mitigating
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global warming through preserving and restoring soil carbon to
increase future carbon sequestration. Although there are numerous
studies on blue carbon ecosystems at small spatial scales [3e5], the
spatial distribution of coastal soil carbon storage and its underlying
driving mechanisms is not well understood at the regional or na-
tional scale due to limited sample data, the difficulty of accurately
determining coastal wetland extent, and the complex soil carbon
development environment. Obtaining an accurate estimate of the
spatial distribution of soil carbon in coastal wetlands and investi-
gating its associated driving mechanisms is essential in evaluating
the current soil carbon status and providing a benchmark for
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policymaking related to carbon sequestration.
The soil organic carbon (SOC) stock in coastal wetlands is

spatially highly heterogeneous due to the complex mechanisms
governing soil carbon accumulation and deposition [6,7]. Topsoil
and subsoil often have different soil carbon dynamics mechanisms
[8,9]. Previous research has revealed significant differences be-
tween topsoil and subsoil in terms of abundance and function in
soil microbial communities [10], plant-nitrifier interactions [11],
and fractions and sources of organic carbon [12]. Therefore, a
comprehensive understanding of soil carbon dynamics in coastal
wetlands must account for mechanisms in both topsoil and subsoil
layers. Given the distinctive environment of the coastal zone at the
land-sea interface, the status of soil carbon in coastal wetlands is
jointly affected by multiple factors, including climate (temperature
and rainfall) [4,13], vegetation (vegetation type, productivity, bio-
logical invasion) [4,14], soil physiochemical properties (soil bulk
density [BD], pH, nitrogen) [3,15,16], geomorphology (elevation,
slope) [17], and the unique coastal hydrological processes (tides,
waves, and inland runoff) [18,19]. A great majority of studies have
focused on one or a few of these factors, such as climate [13,20],
vegetation [4,21], and soil properties [5,7]. However, the impact of
coastal hydrological processes on soil carbon, which has been
explored at smaller scales (i.e., individual estuaries or deltas
[22,23]), remains unclear on a broader scale [24], especially for
deep soil layers. Furthermore, limited attention has been paid to
how these factors work together to affect soil carbon distribution
across different soil depths [4,6]. In fact, coastal soil carbon exists
within a complex ecosystem, where each factor not only directly
regulates carbon dynamics but also indirectly influences it through
convoluted interactions [14,16,22]. Therefore, assessing the direct
and indirect effects of each factor and identifying the controlling
factors in topsoil and subsoil is needed to more clearly understand
driving mechanisms and more accurately map the spatial distri-
bution of coastal soil carbon.

Several studies have attempted tomap the spatial distribution of
coastal soil carbon stock on national to global scales at a coarse
spatial resolution. Commonly, the mean values of a limited number
of samples are taken to represent the soil carbon level of a region or
country d for example, in coastal China [25,26], coastal United
States [27,28], Australian vegetated coastal ecosystems [29], and
global blue carbon stocks [30]. Based on average SOC values, this
approach underrepresents the spatial heterogeneity of coastal soil
carbon, leading to estimates with high uncertainty. Hence, re-
searchers have developed other prediction methods. Meng et al.
[31] estimated the upper 0e1 m SOC density distribution using
simple interpolation based on only 96 samples in China's coastal
wetlands. Holmquist et al. [32] applied mean carbon density
(27.0 kg Cm�3) to conservatively estimate the topmeter soil carbon
stock as 0.72 Pg C of the conterminous United States tidal wetlands.
Wang et al. [33] adopted the nearest neighbor interpolation
method to obtain carbon burial rate maps of global tidal wetlands
based on 613 samples. Rovai et al. [34] utilized multiple regression
to predict global mangrove SOC density using five environmental
covariates at a resolution of 0.25�. However, coastal wetland soil
carbon maps on a large scale with a fine spatial resolution are
lacking, which is a constraint considering the complexity of soil
carbonedriving factor relationships.

With an extensive coastline, China has several wetland types,
including salt marshes, mangroves, tidal flats, and seagrass
meadows. Their complex hydrological conditions and different
vegetation types make China's coastal wetlands ideal for studying
the mechanisms driving the spatial heterogeneity of coastal
wetland SOC. Recently, several advances have been made in esti-
mating the upper 0e1 m blue carbon stock in China, including the
SOC stock of coastal wetlands [7,35]; mangroves, salt marshes, and
2

seagrass meadows [25,31]; and tidal flats [36]. However, these es-
timates were obtained using the mean values of a relatively limited
number of samples, leading to inconsistent conclusions. Further-
more, little is known about how hydrology (freshwater andmarine)
and other factors interactively impact the spatial distribution of
China's coastal wetlands' SOC at different soil depths, and detailed
spatial distribution maps of topsoil and subsoil carbon stock have,
until now, not been available.

The objectives of this study are as follows: (1) explore the direct
and indirect impacts of environmental factors driving the distri-
bution of topsoil and subsoil organic carbon in the Chinese main-
land's coastal wetlands, (2) map the topsoil and subsoil organic
carbon stock of coastal wetlands in the Chinese mainland at a high
spatial resolution, and (3) estimate total SOC stock based on the
maps. To achieve these goals, we collated 408 samples for topsoil
(0e20 cm) and 304 for subsoil (20e100 cm) SOC density from
published literature and publicly available datasets and evaluated
the effects of climate, hydrology, soil, vegetation, and topography
on SOC density with structural equation models. Structural equa-
tion modeling (SEM) is a powerful causal approach for analyzing
complex relationships among multiple variables. Thus, it can be a
potentially effective method for identifying how the environmental
factors interactively influence SOC in coastal wetlands and under-
standing the soil carbon distribution mechanisms in topsoil and
subsoil layers. We then generate topsoil and subsoil organic carbon
density maps at a 90m resolution using machine learning methods.
The results strengthen understanding the spatial distribution and
underlying mechanisms of coastal wetland soil carbon at different
depths and provide a benchmark for coastal wetland management
relating to carbon sequestration.
2. Materials and methods

2.1. Study area

The study area incorporates the coastal wetlands, including
mangrove forests, tidal flats, and salt marshes, in the Chinese
mainland that extends from the Yalu River estuary to the Beilun
River estuary and covers temperate, subtropical, and tropical zones.
For this study, coastal wetlands are defined as the area between
mean low tide andmean high tide but excluding artificial and rocky
coasts. Underwater seagrass beds were not included in the analysis
due to the difficulty of observation using remote sensing.

To predict the spatial distribution of SOC across the study area, it
was necessary to delineate the extent of coastal wetlands. We used
time series Landsat Collection 2 Level-2 (thematic mapper, TM)
surface reflectance images to map the coastal wetland in 2010,
corresponding to the soil sampling time. In this study, coastal
wetlands, distinguished from inland wetlands based on periodical
tide information, are classified into three types based on pheno-
logical information of tidal vegetation: unvegetated tidal flats,
saltmarshes, and mangroves [37]. Tides, here, refer to those
observed using Landsat images (Supplementary Material Fig. S1)
and not astronomical tides [38]. For classification, we generated a
total of 3368 samples (mangrove: 416, salt marshes: 956, tidal flat:
869, and others: 1127) as ground truth and divided them into a
training set (70%) and a validation set (30%) using a stratified
random sampling strategy. The training set was used as the random
forest (RF) input to construct a classification model. Post-
classification processing was conducted to generate the final
wetland classification map. All methods were performed using the
Google Earth Engine platform. The specific methodology and re-
sults (Supplementary Material Figs. S2eS4, and Table S1) are pre-
sented in the Supplementary Materials.
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2.2. Soil sample compilation in China's coastal wetlands

We collated samples from three public soil datasets and pub-
lished meta-analysis literature (Table 1) to generate the most
exhaustive sample set currently available for the Chinese main-
land's coastal wetlands. First, we screened 75 sampling points from
public datasets, including 42 points from the Coastal Carbon
Research Coordination Network dataset [39], 11 coastal soil sam-
ples from the World Soil Information Service (WoSIS) profile
dataset [40], and 22 from the Soil Series dataset of China [41], using
the spatial extent of coastal wetlands we generated in the above
section.

We then obtained 333 samples mainly from the following four
papers [7,25,31,35] d which gathered sampling points in coastal
areas from published sources, some of which also collected samples
in the field [7,25]. These samples were originally derived from
journal papers and dissertations published in the Web of Science
database (http://apps.webofknowledge.com) or China National
Knowledge Infrastructure (http://www.cnki.net). As the original
datasets' research purposes or data collection criteria vary, we
conducted a thorough quality control process. We carefully
reviewed the methodologies and sample descriptions to ensure
that all data met our inclusion criteria. We collated only those
sampling points obtained in the field and recorded them with ac-
curate geographical coordinates. Sampling points from a less than
20 cm soil depth and duplicate sample points were excluded. Data
are restricted to samples collected between 2005 and 2017 and
represent changes in soil carbon at the decadal scale. The study
does not consider longer-term soil carbon dynamics.

All sample SOC density data were standardized to 0e20 and
20e100 cm. For samples with a profile depth of less than 100 cm,
only an SOC density value of 0e20 cm was used in the subsequent
calculation and analysis. Different standardization procedures were
conducted according to the following cases. Where sample SOC
density values were provided for individual soil layers, standardi-
zation for the two depths considered here was computed as
follows:

SOCd0�20 ¼
PN�1

i¼1 SOCdi � ðDi�Di�1Þ þ SOCdN � ð20� DN�1Þ
20

(1)

SOCd20�100

¼SOCdN�ðDN�20ÞþPM�1
i¼Nþ1SOCdi�DiþSOCdM�ð100�DM�1Þ

100�20
(2)

where SOCdi represents the SOC density value (kg m�2) at the i th
soil layer. N refers to the number of soil layers used in target depth
of topsoil (0e20 cm), andMmeans the number of soil layers used in
target depth of subsoil (20e100 cm). Equation (1) applies whenN>
1. If N ¼ 1, that is the first layer is greater than or equal to 20 cm,
then SOCd0�20 ¼ SOCdN . Equation (2) applies when M� N> 1. If
M� N ¼ 1, then SOCd20�100 ¼ �

SOCdN � ðDN � 20Þþ
Table 1
Sources and numbers of coastal samples.

Dataset Number of samples collected Sources

Public sample datasets 42 Coastal Carbon Resear
11 World Soil Information
22 Soil Series of China [41

Literature 333 Published references [
Total 408 -

3

SOCdM � ð100� DNÞ
��ð100� 20Þ. It is assumed that

N � 1 &M � 2 by default according to the sample selection criteria.
Where SOC content and BDwere recorded for each soil layer but

not SOC density, we followed Xu et al.’s [42] approach to calculate
the SOCd (kg m�2) at the depths of 0e20 cm and 20e100 cm:

SOCd ¼
Xn

i¼1

SOCci � BDi � Di � ð1� CiÞ
10

(3)

where SOCci represents the SOC content (%) and BDi represents the
BD (g cm�3) at the i th soil layer. Ci represents gravel content (%) at
the i th soil layer that defaults to 0 where no data are provided.

Where the sample data provided only organic matter content
but no organic carbon, SOC content was estimated using a con-
version coefficient of 0.58 [43]. For samples lacking BD measure-
ments, BD was estimated using the Pedotransfer Functions of Xu
et al. [43].

Finally, 408 samples were selected for the topsoil (0e20 cm) and
304 for subsoil (20e100 cm) in the coastal wetlands of the Chinese
mainland (Supplementary Material Fig. S5). The collected samples
have good coverage along the entire coastal wetlands of the Chi-
nese mainland (Supplementary Material Fig. S5).
2.3. Environmental factors

Five types of environmental factors potentially affecting SOC in
coastal wetlands were selected and collated (Supplementary
Material Table S2). Climate factors, including mean annual tem-
perature (MAT) and mean annual precipitation (MAP), were
derived from the 1 km monthly temperature and precipitation
dataset of China covering the period 1980e2010 [44].

Hydrological factors, including sea surface salinity (from the
global ocean surface salinity grid dataset with a 0.5� spatial reso-
lution [45]), tidal range (from the National Marine Data Information
Center, http://mds.nmdis.org.cn/pages/tidalCurrent.html), the
overland runoff throughflow (g m�2 s�1) per pixel (from Averaged,
Single-Level, Assimilation, Land Surface Diagnostics V5.12.4,
https://disc.gsfc.nasa.gov/), and significant wave height (SWH;
from ERA5 hourly data on single levels in 2010, https://cds.climate.
copernicus.eu), were selected to represent coastal hydrodynamic
conditions.

Vegetation factors include normalized difference vegetation
index (NDVI; http://www.gscloud.cn), net primary productivity
(NPP; http://www.resdc.cn), and wetland type. Wetland type
(WetType), classified as different vegetation types, including
mangroves, saltmarshes, and tidal flats (unvegetated), was derived
from our results of coastal wetland extraction based on remote
sensing imagery (see Section 2 of Supplementary Materials).

Soil properties, including soil pH, cation exchange capacity
(CEC), BD, total nitrogen content, sand, silt, clay, and coarse frag-
ments volumetric fraction (CFVO), were aggregated from Soilgrids
2.0 [46].Topographical factors include elevation (from SRTM 90m
Digital Elevation Database), slope (calculated based on elevation
using the slope tool in ArcGIS 10.2), and distance to the coastline
(Dist2Coast). Dist2Coast was calculated as the distance to global
ch Coordination Network (CCRCN) dataset (https://serc.si.edu/coastalcarbon) [39]
Service (WoSIS) soil profile database [40]
]
7,25,31,35]

http://apps.webofknowledge.com
http://www.cnki.net
http://mds.nmdis.org.cn/pages/tidalCurrent.html
https://disc.gsfc.nasa.gov/
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
http://www.gscloud.cn
http://www.resdc.cn
https://serc.si.edu/coastalcarbon
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self-consistent, hierarchical, high-resolution shorelines (from
https://docs.gmt-china.org/5.4/dataset/gshhg/).

All data were resampled to 90 m using a bilinear interpolation
approach in the ArcGIS tool [47].
2.4. Quantifying the effects of driving factors on coastal wetlands’
SOC using SEM

Structural equation modeling was utilized to identify the path-
ways and relative influence of the selected environmental factors
and SOC and quantify the direct and indirect impacts of each factor.
SEM has emerged as a powerful causality analysis method in
various research fields, including soil science [4], vegetation science
[14], andmicrobiology science [48]. SEM enables researchers to test
theoretical models with multiple variables and pathways and es-
timate their relationships' relative strength and direction [49,50].

Structural equation modeling has several advantages for
pathway analysis. First, a variable can simultaneously serve as both
a dependent and independent variable. Second, SEM can handle
observed variables directly or composite variables that cannot be
measured directly but are indicated by several observed variables.
For example, climate can be considered a composite variable and
indicated by measured variables, including temperature and pre-
cipitation. Third, SEM quantitatively identifies the direct and indi-
rect effects of a variable. The direct effect refers to an environmental
variable directly impacting the target variable, while the indirect
effect manifests through a mediation variable. For example, a hy-
drological factor, such as tidal range, affects soil carbon by influ-
encing soil properties (e.g., soil water content and salinity).

The application of SEM involves the following steps to establish
the network of pathways. First, we hypothesized a conceptual
structural equation model that considers all the selected factors
(i.e., climate, hydrology, vegetation, soil, and topography) to have a
direct impact on SOC density, while climate, hydrology, and
topography were assumed to indirectly impact SOC density
through soil properties or plant growth (Supplementary Material
Fig. S6). We then parameterized the initial SEM model with
normalized data using a “scale” function in R-4.1.0. We assessed its
goodness of fit using Fisher's C, p-value, and degree of freedom (df)
[51]. Generally, a well-fitting SEM model should satisfy the
following conditions: p > 0.05 and Fisher's C/degree of freedom�2.
If the model is not well fitted according to the above indices, it is
modified by removing the insignificant pathways or variables.
Finally, we generated the optimal model that achieved the highest
coefficient of determination (R2) value among the models that met
the criteria.

The standardized direct, indirect, and total effects of the factors
driving the spatial distribution of SOC density were calculated
based on the SEM paths. The direct effect of each driver (here, the
composite variabled that is, hydrology, soil property, and climate)
was the path coefficient on the arrow that directly pointed from the
composite variable to the target variable. The indirect effect was
measured as the product of the coefficient on the arrows from a
composite variable to a mediator variable and from the mediator
variable to SOC. In SEM,multiplemediating variables may be from a
driving factor to SOC, so the indirect effect is the sum of indirect
effects produced through each meditation. The total effect of a
driver is the sum of its direct and indirect effects. All analyses were
conducted using the “piecewiseSEM” package in R-4.1.0, according
to Jing et al. [51]. In addition to SEM, Pearson's correlation analysis
was used to investigate variations in the correlation between SOC
density and environmental factors across national and regional
scales in R-4.1.0.
4

2.5. Mapping the spatial distribution of SOC density by digital soil
mapping

Digital soil mapping (DSM) was used to map SOC density in the
Chinese mainland's coastal wetlands. DSM is a technique used to
predict the spatial distribution of soil properties based on soil-
environment relationships constructed using soil samples and
environmental factors [47,52]. The accuracy of DSM is determined
by both the environmental covariates and the predictive methods
employed. Numerous predictive methods have been developed,
among which machine learning is the most popular due to its high
accuracy and ability to fit nonlinear relationships [53]. While ma-
chine learning is a data-driven method, coupling soil-environment
knowledge to machine learning has recently been applied to soil
mapping research [54]. In our study, the fitted structural equation
model revealed the underlying mechanisms of how environmental
variables impact soil organic carbon. Integrating SEM into machine
learning can be a potential approach for addressing challenges in
soil mapping. To evaluate the effect of applying SEM relationships
on SOC prediction, we introduced two extra types of predictors
(Supplementary Material Fig. S7): the composite variables
(including climate, hydrology, soil, vegetation, and topography)
generated through the observed variables in the fitted SEM models
and the gridded SOC density prediction (YSEM) directly generated
from the constructed SEM models with the environmental vari-
ables as input. Using different combinations of predictors with
machine learning, we demonstrated the effectiveness of employing
SEM variables. We finally obtained the optimal combination with
the highest prediction accuracy. The methodological framework
includes three main parts: (1) feature selection, (2) model evalua-
tion and predictive mapping, and (3) uncertainty analysis
(Supplementary Material Fig. S8).

2.5.1. Development of different combinations of predictors for
mapping SOC

It has been reported that using selected variables generates
higher prediction accuracies than using all the candidate covari-
ables in the DSM [52]. Thus, we used recursive feature elimination
(RFE) for variable selection. RFE is an effective method of selecting
the variable subset that yields the best model performance based
on evaluation metrics by adding or removing each variable itera-
tively [55]. In this study, a cross-validation was conducted to
evaluate the model performance with mean squared error at each
iteration.

In addition to the initial environmental variables, the SEM var-
iables, including the SEM composite (representing climate, hy-
drology, soil, vegetation) and YSEM (the predicted SOC using SEM
models) based on the constructed SEM (YSEM), were utilized for
modeling. To evaluate the effectiveness of different predictors, two
combinations were developed, i.e., I: RFE selected from only the
initial environmental variables and II: RFE selected from both the
initial environmental variables and the generated SEM variables.

2.5.2. SOC density prediction and evaluation
We employed four machine learning methods to map SOC

density: RF [56], Cubist [57], Support Vector Machine (SVM) [58],
and Extreme Gradient Boosting (XGBoost) [59]. These data-driven
methods are commonly used in soil and other geographic
element predictions or classifications (detailed description pro-
vided in Section 1.3 of Supplementary Materials). All machine
learning algorithms and hyperparameter tuning were executed
with the “caret” package [59] in R-4.1.0.

To validate the performance of all the models, a ten-fold cross-
validation repeated five times was conducted [47]. The root mean
square error (RMSE) and coefficient of determination (R2) of the five

https://docs.gmt-china.org/5.4/dataset/gshhg/
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validations were used to evaluate the prediction accuracy [46]. To
further validate how well the predicted results fit the observed
values across the entire north-to-south coastal zones, we compared
the mean predicted SOC density integrated at each segment
spanning three degrees of latitude with that of the observed sam-
ples. First, we divided the entire coastal zone into three-degree
latitude segments. Within each segment, we calculated the
average values of the predicted SOC density from 90 m grid maps
and the observed values of soil samples. We then compared the
mean predicted values with the corresponding observed average
values for each latitude segment. This spatially explicit assessment
allowed us to identify potential patterns or variations in model
performance across different geographic regions.

2.5.3. Uncertainty analysis
Quantifying the uncertainty of SOC prediction is an important

aspect of DSM [53]. A nonparametric bootstrapping approach was
used to quantify the uncertainty in SOC density induced by the soil
samples and environmental variables by randomly sampling 100
bootstrap combinations [8]. The mean value of 100 times the pre-
diction values was used as the final prediction result. Based on the
100 generated SOC spatial distribution maps, we calculated the
standard deviation of SOC density in each grid pixel and used the
spatial variation of the standard deviation divided by the mean
value to represent the SOC prediction uncertainty in the study area,

with the formula as follows: Uncertainty ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i¼1
ðyi�yÞ2

q

y , where

the numerator is the standard deviation, N is the number of sam-
pling times (here N¼ 100), yi is the ith predicted value of SOC, and y
refers to the predicted average value of SOC of N sampling times.
Bootstrapping was conducted using the “boot” package [8] in R-
4.1.0.

2.6. Estimation of total SOC storage

Based on the obtained SOC density maps, coastal SOC storage
was calculated according to the following formula [42]:

SOCS¼
XN

i¼1

�
SOCD0�20i

þ SOCD20e100i

�� S (4)

where SOCS is the total SOC storage, SOCD0�20i
and SOCD20e100i

represent the SOC densities (kg m�2) of 0e20 cm and 20e100 cm at
the ith grid, respectively, and S is the area (m2) of the grid.

Considering that carbon stock calculations are based on the
90m resolution grid, whereas the initial wetland extent is at a 30m
resolution, this transformation from a 30e90 m resolution may
have caused overestimation. To reduce this type of error, for grid
cells smaller than 90 m, the area was calculated based on the actual
wetland area of the original 30 m cells rather than using the
90 � 90 m area.

3. Results

3.1. Characteristics of SOC density in the Chinese mainland's coastal
wetlands

The SOC density of samples according to climate zones, eco-
systems, provinces, and estuaries within the study area is shown in
Fig. 1. The SOC density exhibits marked spatial variation across the
coast of the Chinese mainland (Supplementary Material Fig. S5), in
general increasing from temperate to tropical latitudes (Fig. 1a).
Notably, the samples with high SOC values, especially in the topsoil,
were located mostly in subtropical regions, which is consistent
with Xia et al.’s [7] findings, related to the combined effects of
5

vegetation productivity and carbon input in the subtropical area.
Among the four marine areas, SOC density on the Yellow Sea coast
exhibited the lowest values. At the same time, the South China Sea
had the highest (Fig. 1b). Ecosystem type strongly influenced the
distribution of SOC density, especially in the topsoil (Fig. 1c).
Mangroves had the highest SOC density values, followed by salt
marshes. In contrast, values for the tidal flats were generally low.
SOC density in both topsoil and subsoil varied greatly among
different estuaries, with the lowest mean values in Laizhou Bay and
the highest in Qinglan Harbor (Fig. 1d). The mean topsoil and
subsoil SOC densities in Hainan Province were the highest among
all the provinces, while mean values were lowest in Shandong and
Jiangsu Provinces (Fig. 1e).

3.2. Correlation between SOC density and environmental factors on
national and regional scales

The controls on SOC density varied noticeably between national
and regional scales (Fig. 2). In general, climate, soil physicochemical
properties, and hydrodynamic factors exhibited the strongest cor-
relations with SOC density on the national scale. The most impor-
tant national controls of SOC density were temperature (MAT),
precipitation (MAP), vegetation type (WetType), soil pH, and soil
CEC, followed by inland runoff (Runoff) and seawater salinity (Sea
Salt; Fig. 2). Generally, the correlations between environmental
variables and SOC in topsoil and subsoil showed similar patterns.

The highly correlated factors in the four marine zones exhibited
large differences (Fig. 2). On the Bohai Sea coast, climate factors
were the most important in both the topsoil and subsoil, but hy-
drological factors (viz., tidal range) dominated in the subsoil.
Climate and topography were the most strongly correlated for the
Yellow Sea coast, while the distance from the coastline was highly
correlated with the subsoil SOC. Meanwhile, vegetation and hy-
drology were more important than other factors on the East China
and South China Seas coasts. This indicates that even the sign of
correlation for different factors may vary between zones. For
example, MAT or MAP was positively correlated with SOC density
on the East China and South China Sea coasts and on the national
scale but negatively correlated on the Bohai and Yellow Sea coasts.
Moreover, the hydrodynamic intensity of different sea areas varied
greatly, and this had a significant impact on the spatial variation of
SOC (Fig. 2). Runoff and SWH were strongly negatively correlated
with SOC density on the Yellow Sea coast, while tidal range
(TidalRange) was significantly positive in the case of the Bohai Sea
coast. This indicates that the controlling processes for SOC
decomposition and composition are regionally distinct.

3.3. Direct and indirect effects of environmental factors on SOC
density

The fitted structural equationmodels and the direct and indirect
effects of each environmental factor for topsoil and subsoil are
shown in Fig. 3. The interactions among variables are well sup-
ported in SEM. The goodness-of-fit measures of the final SEM
models indicate a good fit for the models. For topsoil, 41% of the
variation was explained and 40% for subsoil. Since topography did
not significantly affect SOC, this factor was omitted from both final
models.

The results indicate that hydrology exhibited the highest total
effect on topsoil and subsoil organic carbon density, followed by
vegetation, soil properties, and climate (Fig. 3c and d). Although the
ranking of the four factors in terms of total effect is the same for
topsoil and subsoil, the two structural equation models delineate
different interactions between the four factors as well as driving
mechanisms governing the spatial distribution of coastal SOC



Fig. 1. The distributions of SOC density (kg m�2) in topsoil and subsoil based on climate zones (a), marine areas (b), wetland types (c), independent wetlands (d), and administrative
areas (e). “ � ” represents the mean and “�” represents the median. Points outside the whiskers indicate outliers, suggesting the presence of unusually high or low values.

Fig. 2. Correlation between environmental variables and SOC density at national and
regional scales using Pearson correlation analysis. Note: MAT: mean annual temper-
ature, MAP: mean annual precipitation, SeaSalt: seawater salinity, SWH: significant
wave height, TidalRange: tidal range, TN: total soil nitrogen, BD: bulk density, CFVO:
coarse fragment volume, CEC: cation exchange capacity, WetType: wetland type, and
Dist2Coast: distance to coastline.
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density in the two layers (Fig. 3a and b).
In topsoil (Fig. 3aec), vegetation had the largest direct effect

(0.33) on the spatial distribution of organic carbon density. This
may be because plants are the major source of topsoil carbon input
and capture organicmatter in nearbywater bodies. Increasing NDVI
and NPP were associated with increasing SOC density. Hydrology,
6

with the second-largest direct effect, positively influenced soil
carbon distribution. Greater seawater salinity (SeaSalt) and lower
tidal range were associated with increasing SOC content in topsoil.
Additionally, hydrological factors exhibited the largest indirect ef-
fect by affecting soil properties (with a coefficient of 0.17) and
vegetation (0.04). This suggests that periodic inundation and
exposure significantly impact soil pH, CEC, clay, and so forth,
affecting soil carbon accumulation. Unexpectedly, climate demon-
strated no statistically significant direct effect and only indirectly
affected SOC density through vegetation and soil properties. In
addition, the influence of climate on SOC is shown to depend more
on temperature than rainfall (Supplementary Material Fig. S9).

The subsoil structural equation model (Fig. 3bed) indicated that
hydrology had the largest direct effect (0.51) on organic carbon
distribution. Seawater salinity (SeaSalt) played the most important
role in shaping SOC storage patterns among the hydrological vari-
ables. Hydrology emerged as the most significant factor, with
seawater salinity ranking first among all factors according to the RF
analysis (Supplementary Material Fig. S9). Additionally, larger
surface runoff and lower significant wave height (SWH) were
associated with increased SOC, as runoff transports more nutrients
and lower wave energy reduces erosion and promotes a more
stable soil environment. Significantly, hydrological environments
and water movement also indirectly affected SOC through soil
(�0.14) and vegetation (0.24). This is probably due to water flow
patterns that reduce soil aeration and oxygen and increase water
saturation. This special environment limits microbial activity and
decomposition rates, promoting organic carbon dynamics. More-
over, hydrology brings more nutrients that enhance vegetation
growth, thereby contributing to SOC through the input of organic
material from plant residues and root systems. The impacts of
vegetation (mainly through vegetation type), climate, and soil
properties (through soil pH) on organic carbon density were
weaker in subsoil (Fig. 3c and d) compared to topsoil.



Fig. 3. aeb, SEM models of topsoil (a) and subsoil (b) SOC. ced, The direct, indirect, and total effects of environmental factors on topsoil (c) and subsoil (d) SOC. The arrows'
thickness is proportional to each arrow's standardized path coefficients (viz., direct effects). Green lines showed statistically positive pathways, while orange lines represented
statistically negative pathways. Solid lines indicate statistically significant correlations, whereas dashed lines indicate non-significance. Variables within rounded rectangles are
composite variables, while those in boxes are observed variables. The significance levels of each predictor on SOC are **P < 0.01 and *P < 0.05. The absence of a star symbol signifies
no statistical significance. Note: MAT: mean annual temperature, MAP: mean annual precipitation, SeaSalt: seawater salinity, SWH: significant wave height, TidalRange: tidal range,
TN: total soil nitrogen, BD: bulk density, CEC: cation exchange capacity, WetType, wetland type.
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3.4. Spatial distribution of coastal SOC density

3.4.1. Model performance for SOC density prediction
The root mean square error and R2 values of the predicted SOC

densities using the four machine learning methods are displayed in
Table 2. RF outperformed the other machine learning models in all
cases, followed by XGBoost.

The accuracy with environmental variables, in addition to SEM
variables (SEM composite variables and YSEM), was slightly
improved, irrespective of any machine learning method (Table 2).
This proves that adding variables representing soil-environment
knowledge from the SEM model improved the mapping accuracy
compared to data-driven machine learning models for both topsoil
and subsoil.

Considering that the number of variables in models with vari-
able set I was smaller than that of II (Supplementary Material
Table S3), and Fig. S10 (Supplementary Material) shows that the
predicted SOC density values for the entire area of 90 m grids by
variable set I were closer to the observed values for the soil samples
than that by variable set II (Supplementary Material Table S4),
despite the slightly lower accuracy of variable set I with RF model
compared to variable set II with RF model in Table 2. Hence, RF
modeling with a variable set I was chosen as the optimal model for
mapping topsoil and subsoil SOC density as well as estimating total
carbon stock.
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3.4.2. Predicted SOC density in the Chinese mainland coastal
wetlands and evaluation

We used the optimal model to predict topsoil and subsoil SOC
density and calculate uncertainty at a 90 m spatial resolution
(Fig. 4a and b). The results indicated that the SOC density values of
topsoil and subsoil generally increase from north to south, while
topsoil SOC density exhibits greater spatial heterogeneity than that
of subsoil, especially in the south. The predicted SOC density was
the lowest in Shandong and Jiangsu Provinces and the highest in
Guangxi, Guangdong, and Hainan Provinces, basically consistent
with that of the samples (Fig. 5). According to the SOC density
maps, the total SOC storage in the top 1 m of soil was estimated at
74.58 ± 3.85 Tg C.

The percentage uncertainty maps also exhibit marked spatial
variability, ranging from 5.32% to 37.38% for topsoil and 3.18%e
30.90% for subsoil (Fig. 4a). Higher levels of uncertainty (>25% on
average, Fig. 4a) were observed in some areas of Liaoning Province
(both topsoil and subsoil) and some areas of Fujian Province
(subsoil).

The mean predicted SOC density within each three-degree
latitude segment was close to the observed (Fig. 5), especially for
the topsoil, suggesting the selected models were sufficiently reli-
able. However, there were relatively large discrepancies around
latitudes 35�e37� N and 27� N, where the modeled values were
overestimated. These differences may be due to a lack of samples in
these areas. The results demonstrate that high SOC densities are



Table 2
Accuracy of different models with combinations of predictors.

Layer Variable sets Models RMSE R2

Mean S.D. Mean S.D.

Topsoil I: Initial environmental variables RF 1.67 0.36 0.53 0.13
XGBoost 1.75 0.35 0.49 0.14
Cubist 1.86 0.41 0.43 0.13
SVM 1.97 0.43 0.37 0.12

II: Initial environmental variables and SEM variables RF 1.66 0.35 0.53 0.12
XGBoost 1.73 0.29 0.49 0.13
Cubist 1.85 0.40 0.44 0.13
SVM 1.96 0.39 0.38 0.11

Subsoil I: Initial environmental variables RF 3.92 0.93 0.61 0.13
XGBoost 4.33 0.96 0.56 0.15
Cubist 4.21 0.97 0.55 0.13
SVM 4.44 1.00 0.50 0.13

II: Initial environmental variables and SEM variables RF 3.87 0.94 0.62 0.13
XGBoost 4.24 1.03 0.57 0.16
Cubist 4.23 0.92 0.55 0.13
SVM 4.40 0.97 0.51 0.13

Note: Two sets of variables were evaluated in the models, including I: RFE selected variables from only the initial environmental variables and II: RFE selected variables from
both the initial environmental variables and the generated SEM variables. SEM variables include SEM composite (Climate, Hydrology, Soil, Vegetation) and YSEM (the predicted
SOC using SEMmodels). For Topsoil, variable sets are I: SOC ~ pHþMAP þ SeaSalt þMAT and II: SOC ~ pH þ Climateþ SeaSaltþMATþ Vegetation. For Subsoil, variables sets
are I: SOC ~ MAT þ MAP þ SeaSalt þ TidalRange þ SWH þ Runoff þ NDVI þ Elevation þ Slope þ pH þ Dist2Coast þ TN þ NPP. II:
SOC ~ MAT þ MAP þ SeaSalt þ TidalRange þ SWH þ Runoff þ NDVI þ Elevation þ Slope þ Dist2Coast þ TN þ BD þ Climate þ Hydrology þ Soil þ Vegetation þ SOCpre.
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characteristic of lower latitude regions (i.e., south of 19� N), while
values are lower between 32� and 37� N.
4. Discussion

4.1. Environmental factors driving the spatial distribution of SOC in
coastal wetlands

This study utilized structural equation models to examine the
relationship between environmental factors (including hydrology,
vegetation, climate, soil properties, and topography) and coastal
SOC and identify their interactions. The results demonstrate that
hydrological variables and vegetation exert a more pronounced
impact on the distribution of SOC density in both the topsoil and
subsoil of the Chinese mainland's coastal wetlands than climate or
soil properties. Furthermore, the mechanisms are different in the
topsoil and subsoil layers. The topsoil usually accumulates soil
carbon from plant inputs, while subsoil carbon is more easily
affected by hydrology in that the environment is anoxic and
conducive to carbon accumulation. This observation aligns with
previous studies [24] and the feature-importance ranking results
from RF models (Supplementary Material Fig. S9). Moreover, our
findings highlight the importance of considering the effects of
multiple environmental factors on SOC distribution by examining
their interactions. Due to the distinctive land-sea interaction
environment of coastal wetlands, hydrological factors (i.e., period
tidal inundation and wave action) directly bring organic carbon
matter in and out through water movement and indirectly influ-
ence SOC distribution by affecting vegetation growth and the soil
environment. By utilizing SEMmodels, we could better understand
the direct and indirect effects of hydrology and vegetation on
coastal soil carbon dynamics.

Our results suggest that hydrological processes, such as tides,
waves, seawater salinity, and inland runoff, are particularly
important to coastal C and exert positive direct effects on SOC [7].
The strong positive effect of sea salinity on SOC density in our study
area may be attributed to the observation that soil microbial ac-
tivities decrease with salinity [5,19], which constrains carbon loss
[18]. In addition, coastal wetlands receive substantial inputs of
organic matter and nutrients from inland runoff, encouraging plant
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growth [60]. However, intensified wave activity can lead to a
marked resuspension effect and greater disturbance of surface
sediments [21], thereby limiting soil organic carbon accumulation.
The dynamic exchange of water flow, including tides and waves,
can directly import or export carbon to adjacent habitats, and the
lateral transport of carbon caused by tides also affects the distri-
bution of soil organic carbon [61]. Notably, in our study, tidal range
and significant wave height (SWH) exhibit non-significant impacts
on SOC, perhaps because inputs and outputs due to dynamic hy-
drodynamic conditions cancel each out. In addition to the direct
effect of hydrological factors on SOC density, hydrological processes
indirectly affect SOC stability through their impact on soil chemical
and physical properties (such as pH, BD, and CEC), particularly in
deep soil layers. This may be because hydrological conditions can
affect subsoil anaerobic conditions closely correlated with soil
microbial activity and decomposition (Fig. 3a and b). Furthermore,
tidal characteristics affect vegetation type (viz., WetType), and the
nutrients carried by water flow promote the growth of vegetation
(viz., NPP and NDVI) [62].

Vegetation type and productivity both considerably impact SOC
distribution in coastal wetlands [2], as indicated by SEM models
(Fig. 3). Specific vegetation types within these categories also show
notable distinctions; for instance, mangroves usually have a higher
sediment carbon density than salt marshes. Moreover, a higher NPP
indicates increased biomass production, leading to greater carbon
incorporation into the soil through processes like litterfall, root
turnover, and decomposition of organic materials [63]. Vegetation
displays high productivity and consistently supplies organic car-
bon, contributing to elevated SOC stocks. Furthermore, although
high net primary productivity induces high C input, carbon accu-
mulation depends largely on the C stored in the soil, a product of
the balance between inputs and outputs [35]. In the topsoil, vege-
tation plays a more significant role by, for example, preventing soil
erosion and promoting sequestration, while in deeper soils, the
influence of high NPP plants on coastal wetlands’ SOC stocks is
shown here to be relatively small (Fig. 3a and b) [60]. In general, net
SOC density is influenced by primary productivity and litter input,
and the interaction of vegetation with other factors, such as hy-
drological and soil conditions, may be key determinants of how
much carbon eventually enters the soil and is preserved and



Fig. 4. Predicted SOC density maps (a) and uncertainty maps (b) in topsoil and subsoil using RF modeling with variable set I at a 90m resolution for the Chinese mainland's coastal
wetlands using an Albers conic equal-area projection. For visualization purposes, maps at the national scale (a) are depicted in 5 km resolution, and maps in the zoom boxes (b) are
in 90 m resolution.
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Fig. 5. Average SOC density within each three-degree latitude segment for observed
samples and predicted values at 90 m resolution: a, topsoil; b, subsoil.
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stabilized in situ.
There is a growing focus on the role of soil properties in soil

organic carbon formation. The results here indicate that soil
physicochemical properties have a negative effect on SOC in both
topsoil and subsoil (Fig. 3a and b), which is consistent with the
results of previous studies [8,20]. We also found that the key factors
influencing SOC differ between the two soil layers. In topsoil, soil
silt content emerged as the most significant factor determining
SOC. This may be because soil physical factors (e.g., silt content) can
stabilize carbon in the topsoil, perhaps arising from the formation
of protective soil aggregates [34,64]. Meanwhile, chemical proper-
ties, including soil pH, were the most significant in the subsoil,
followed by CEC. Soil pH is closely linked to microbial carbon cycle
processes since greater soil acidity suppresses microbial growth,
thereby limiting organic matter decomposition [18,65]. Moreover,
soil respiration in coastal wetlands is limited by soil CEC [66]. Our
study also revealed that soil exerts indirect effects on SOC through
the mediated impact of vegetation by controlling the allocation of
water and nutrients, thereby affecting the input and output of soil
carbon [8].

Climate is commonly regarded as the most important factor
affecting carbon storage; however, our results indicate that the
direct effect of climate is not as substantial as vegetation and hy-
drology. Instead, climate primarily influences SOC indirectly
through vegetation and soil. SEM models indicate that the direct
effect of climate on SOC in the subsoil is negative, although not
statistically significant. The observed negative effect is consistent
with previously observed relationships due to the promotion of soil
respiration and C loss with increased temperature [4,20,22]. On the
other hand, the indirect influence of climate on SOC was observed
as positive here, which has generally not been considered before.
For example, Tang et al. [67] only reported a simple correlation
between climate and SOC, and Wang et al. [33] used stepwise
regression to reveal positive feedback between the climate and
carbon accumulation of coastal wetlands. Moreover, the positive
relationship between temperature and productivity may be
partially offset by the negative relationship with decomposition
[4,68]. As indicated by our study, the positive indirect effects of
climate on SOC compensated for the negative direct effects and
resulted in a positive total climatic effect. Our results also suggest
that the effect of climate varies with soil depth (Fig. 3c and d)
because, in deeper soil, C is less affected by temperature and rainfall
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variations, while topsoil is more strongly influenced by it [8,20].
Although climate regulates important abiotic and biotic processes
that can alter carbon stocks (Fig. 3), the net effect of temperature or
precipitation on coastal C varies between regions.

4.2. Estimated SOC stock of the Chinese mainland's coastal
wetlands

Estimating SOC stocks in coastal wetlands is important but
challenging due to the lack of accurate wetland extent and limited
soil observation data. In this study, we addressed these challenges
by accurately estimating the extent of coastal wetlands in China
using remote sensing technology rather than statistical wetland
extent data. Further, based on the currently most comprehensive
soil carbon density datasets of coastal wetlands in the Chinese
mainland collected in this study, we generated a 90 m SOC density
map using DSM. DSM incorporating soil-environment knowledge
can accurately characterize the spatial variation of soil carbon. By
integrating the 90m SOC density data, we obtained the total C stock
(74.58 ± 3.85 Tg C) down to a 1 m soil depth for the entire coastal
wetlands of the Chinese mainland. As seen in Table 3, previous
studies estimated the soil C stock in China's coastal wetlands by
multiplying the average SOC density by statistical wetland area
[7,25,26,31,36], as exemplified by estimates such as
48.12e123.95 Tg C presented by Meng et al. [31], 15.4 ± 1.8 Tg C
reported by Fu et al. [25], 57 Tg C estimated by Xia et al. [7],
78.07 Tg C in tidal flats topsoil by Chen et al. [36], and
41.50e114.81 Tg C reported by Wang et al. [26]. Referring to
ecosystem types, Chen et al. [36] only focused on a single
ecosystem, tidal flats, while Fu et al. [25] and Meng et al. [31] did
not include tidal flats. Regarding wetland areas, Fu et al. [25] and
Xiao et al. [35] utilized wetland survey data, excluding wetlands
below 8 ha in size. Additionally, their wetland survey data
encompassed marine areas with a depth not exceeding 6 m,
potentially leading to overestimating the total area. Meng et al. [31]
and Xia et al. [7] used wetland areas extracted from remote sensing,
with the latter underestimating wetland areas. Wang et al. [26]
used wetland areas extracted from remote sensing and investiga-
tion. Then they multiplied the average SOC stock reported in the
literature to estimate China coastal wetlands' total 1 m soil carbon
stock as 41.50e114.81 Tg.While it is difficult to directly compare the
above results across methods due to variations in wetland extents
used, our approach accounts for complex soil-environment re-
lationships, employs a larger number of sampling points, and uti-
lizes advanced soil mapping techniques, thus significantly reducing
uncertainty. Our estimate is approximately 30% higher than that of
Xia et al. [7], although their study includes no quantitative
consideration of uncertainty. This may be due to the accurate
mapping of the coastal wetland extent and the obtained soil carbon
densitymap at a 90m resolution generated based on a substantially
greater number of samples as expressed in our study.

4.3. Implications and limitations

This study presents a framework that enhances understanding
of the interaction mechanism of environmental factors driving the
spatial distribution of SOC over coastal wetlands. It also enables the
accurate prediction of detailed SOC maps that can be applied to
other countries and regions. The relationship between soil organic
carbon and hydrological factors, vegetation, soil properties, and
climate and the SOC density maps provide references for wetland
management to promote blue carbon storage and mitigate climate
change. For example, restoring tidal channels, increasing fresh-
water input, and reintroducing natural vegetation are viable
options.



Table 3
Comparison of existing carbon storage estimation in China's coastal wetlands.

Data sources Wetland area Number of soil samples Soil sample depth SOC grid mapping SOC stock in 0e1 m

Meng et al. [31] 3.21 � 104 ha of mangroves, 1.20 � 105

e3.43 � 105 ha of salt marshes in 2013
96 0e1 m Simple kriging interpolation 48.12e123.95 Tg

Chen et al. [36] 1.1 � 106 ha of tidal flats in 2016 720 for tidal flats 0e15 cm Average 78.07 Tg
Fu et al. [25] 3.55 � 104 ha of mangroves 144 for mangroves 0e1 m Average 6.3 ± 0.6 Tg

1.03 � 105 ha of salt marshes 98 for salt marshes 7.5 ± 0.6 Tg
Xiao et al. [35] 5.79 � 106 ha coastal wetlands in 2015 171 0e1 m Average 490 ± 50 Tg
Xia et al. [7] 5.61 � 105 ha of coastal wetlands in

2015
142 0e40 cm,

40e100 cm
Average 57 Tg

Wang et al. [26] 1.44 � 106 ha coastal wetlands - 0e1 m Average 41.50e114.81 Tg
(Saltmarsh 9.55
e24.86 Tg; Mangrove
4.951 Tg; Tidal flats 27
e85 Tg)

Our study 1.06 � 105 ha of coastal wetlands in
2010

408 0e20 cm,
20e100 cm

90 m resolution grid mapping 74.58 ± 3.85 Tg
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Nevertheless, there are several limitations associated with this
study. First, the distribution of sample points influenced the map-
ping results. The uncertainty of sample points in some areas, such
as Jiangsu and Liaoning Provinces, was high, indicating more
samples can be collected in these areas to improve prediction ac-
curacy in the future (Fig. 4). Second, the soil properties as influ-
encing factors of soil carbon, for the collected sample points, were
not directly measured but obtained from other data sources (e.g.,
the SoilGrids database). Third, estimating SOC stock at a depth of
1 m for the whole study area ignores the uncertainty of soil depth
variations (see Macreadie et al. [30]).

The extent of coastal wetlands constantly changes over the
years, resulting in dynamic soil carbon stocks within the wetland
area. To estimate the dynamic SOC stock of coastal wetlands in the
future, seasonal or interannual variations in coastal extent need to
be produced using multiyear satellite imagery. SOC samples should
be collected continuously in the long term.

In addition to natural environmental factors, human activities
(such as aquaculture and pollution) have increasingly affected soil
carbon along the coastline. Thus, including covariates that reflect
anthropogenic influence would enhance understanding of the
mechanism driving soil carbon distribution.

Accurate assessment of soil-environment relationships or
process-based models serves as a useful complement to the data-
driven method. This paper provides a potential method for inte-
grating data with machine learning models. Although adding var-
iables generated from the fitted SEM models slightly increased the
SOC prediction model accuracies at a sampling point level, the
predicted SOC maps show differences betweenwith or without the
SEM variables (Supplementary Material Fig. S11). Based on the
maps generated with the SEM variables, the calculated SOC stock
was 93.55 ± 5.57 Tg, while models without SEM variables produced
more conservative SOC stock estimations: 74.58 ± 3.85 Tg (Fig. 4).
This indicates that using different predictors produces different
results, similar to Holmquist et al.’s [32] and Lopatin et al.’s [54]
findings. However, validation based on sampling points should not
be the only criterion for choosing the final result. Further solutions
to integrate knowledge with data-driven models should be
investigated.

5. Conclusions

This study compiled 408 samples from publicly available liter-
ature and datasets to establish the currently most comprehensive
SOC database for the Chinese mainland coastal wetlands. By doing
so, we disentangled the direct and indirect effects of multiple
environmental factors on SOC using SEM. We developed the first
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version of high-resolution (90 m) coastal wetland topsoil and
subsoil SOC density grids of the Chinese mainland by integrating
machine learning with the soil-environment knowledge generated
by SEM. The results highlight the key role of hydrological factors
(with the largest total effect) and vegetation (with the second
largest total effect) in shaping the spatial distribution of coastal soil
carbon in both topsoil and subsoil d that is, increased seawater
salinity and higher vegetation productivity are associated with a
higher SOC density. Vegetation exerts its greatest direct impact on
the topsoil, but its effect decreases in the subsoil, where hydrology
plays a more influential role. Soil properties, such as pH and CEC,
negatively affect topsoil and subsoil SOC density. Climate has a
limited direct impact and mostly affects SOC density indirectly. The
generated 90 m resolution SOC density maps for topsoil and sub-
soil, as well as the estimated total carbon stock at the 0e1 m depth
of the Chinese mainland's coastal wetlands, serve as an important
benchmark. Based on the predicted 90 m resolution SOC density
map, this study estimates the total blue carbon stock down to 1 m
soil in coastal wetlands, including mangroves, salt marshes, and
tidal flats, to be 74.58 ± 3.85 Tg C. The estimation based on the grid
map was estimated to have lower uncertainty than previous
studies. It improved the current understanding of the underlying
mechanisms of soil carbon in the Chinese mainland's coastal wet-
lands. Hence, this study offers new insights for improving wetland
management strategies and climate change policies related to
wetlands nationally.
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