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ABSTRACT: Urban greening (UG) affects local climate by altering surface
energy balance, while long-term UG cooling potential, patterns, and
contribution to curbing urban warming remain unclear. Here, we designed
an novel statistical model to evaluate the cooling potential of UG (CPUG)
and created the first CPUG map for China. By exploring the trends in
observed and simulated urban surface temperatures (UST), we quantified the
CPUG of 0.20 K over the past two decades, which slowed down the warming
trend by 14.17% in Chinese cities. We found that the CPUG varied
significantly between the urban core and sprawl areas. Specifically, the CPUG
in the urban core was approximately 1.01 K, and it contributed to curbing
urban warming by 56.08%, which was more than 7.2 times higher than in the
sprawl areas, where the CPUG was only 0.14 K and contributed to curbing
urban warming by 9.93%. We further revealed that urbanization and major
ecological restoration projects are the key factors influencing CPUG, emphasizing the need for anthropogenic vegetation
management to curb urban warming. The proposed model in this study provides a powerful tool for quantitatively assessing the
impact of long-term UG trends on urban warming. The results of the study are an important reference for building climate-adaptive
cities.
KEYWORDS: urban greening, ecological restoration project, cooling effect, climate mitigation

1. INTRODUCTION
China has experienced a dramatic shift in urbanization, with
more than 60% of the population living in urban areas.1 Over the
past two decades, the country’s built-up area has increased by
over 30,000 km2, accounting for approximately 46.67% of the
global urban expansion area (Figure S1). Rapid urban expansion
has fundamentally altered surface properties and energy
balance,2 leading to various eco-environmental issues such as
air pollution and biodiversity loss, as well as urban warming.3

Moreover, as a result of climate change, the frequency and
intensity of extreme heat events in cities have significantly
increased, exacerbating the impact on urban natural and socio-
economic systems through the compounded effect of the heat
island effect and heat waves.1,4

The benefits of urban greening (UG) in improving local
climate have been well-documented.5,6 UG is known to mitigate
global warming through efficient absorption of atmospheric
carbon dioxide via photosynthesis7 and to alter biophysical
properties,8,9 such as increasing surface roughness and
evapotranspiration, which leads to surface cooling. However,
most studies focus on the microclimate impacts of changes in
green spaces in urban areas,10 and do not fully account for the
impact of long-term UG trends on the local climate. Estimating

the cooling potential of UG (CPUG) is challenging due to global
variability in urban climatic contexts, data sources, and research
methods, including manipulation experiments,11 model simu-
lations,6 and remote sensing,12 which often result in diverse and
even contradictory results, making it difficult to reveal universal
patterns.10 Understanding persistent and common UG trends
can provide an actionable basis for urban warming mitigation
strategies. Thus, integrating UG into a national urban surface
temperature (UST) mitigation and adaptation strategy remains
challenging due to the complexity of biophysical processes,
which makes it difficult to separate unidirectional signals of UG
affecting local climate from a multitude of potential factors.
Consequently, previous studies remain controversial regarding
the sign and magnitude of the temperature response to the
greening of urban areas.13,14
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The effectiveness of UG in curbing urban warming depends
on the location of vegetation management intensification.15

While many studies have documented the extent to which
nature-based solutions contribute to climate mitigation, such as
carbon sequestration in mangroves16 and agricultural soils,17 the
carbon metric alone may not fully reflect the climate mitigation
potential of these solutions.18 Integrated assessment models,
which generate most mitigation policies and scenarios, ignore
the biogeophysical effects of vegetation change.19 For example,
afforestation in the tropics is nearly twice as effective as
suggested by carbon accounting alone because evaporative
cooling outweighs solar radiation absorption.20 In contrast, the
net effect of greening on climate in colder regions of the
Northern Hemisphere remains a subject of debate21 because
previous studies have shown that albedo warming effects
dominate in these regions, unlike greening, which is gradual.
Despite the ongoing debate, there are currently no studies on the
impact of climatic background on the UST mitigation
contribution of UG to support its applicability in urban areas.
Moreover, ecological restoration projects (ERPs) have helped
China contribute to 25% of global greening over the past two
decades, but their impact on the contribution of UG to urban
warming in Chinese cities has not been effectively quantified.22

Additionally, UG tends to increase the value of land and
property, benefiting elite groups and exacerbating social and
environmental inequalities.23,24 Consequently, questions arise
about whether elite groups have a greater right to enjoy the
cooling benefits of UG than working-class and racialized urban
dwellers.25−27 The lack of national mapping of the UST
mitigation contribution of UG in China limits the government’s
ability to prioritize where to invest to maximize climate benefits,
and the potential impact factors and resulting impacts remain
unclear. Therefore, to comprehensively understand the cooling
potential of UG and its contribution to urban warming on a
national scale, a comparative study using consistent methods
across time and space is essential.
To address these issues, we conducted long-term continuous

monitoring of urban areas in China and designed a simple yet
robust model for evaluating the CPUG based on theNormalized
Difference Vegetation Index (NDVI) extracted from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
data product (Figure S2). We report, for the first time, a map of
the CPUG in China from 2001 to 2018. Moreover, we examine
the spatial gradient of the CPUG with respect to urbanization,
exposure, inequality, and other relevant drivers (e.g., ecological
restoration project). The contribution (see Text S1 for more
details) of this study is to provide convincing evidence of
China’s efforts to combat global climate change and to
emphasize the importance of prioritizing urban ecological
restoration, especially in the context of the ongoing discussion
on the question, “Do we need to plant trees?”.

2. MATERIALS AND METHODS
2.1. Data Sets. This study utilizes multiple data sets,

including administrative division data, MOD13A2 normalized
vegetation index data,28 MCD12Q1 land cover type data,29

MOD11A2 land surface temperature data,30 MOD09A1 land
surface reflectance data,31 the ERA5-Land reanalysis data set,32

WorldPop population density data sets,33 the impervious surface
data,34 the harmonized global nighttime light data set,35 Global
Urban Boundaries data36 and climate zone data.37

The administrative division data came from the National
Catalogue Service for Geographic Information (NCSGI.).

MODIS data were obtained from the National Aeronautics
and Space Administration (NASA);MOD13A2 andMOD11A1
were used as indicators to evaluate the CPUG on UST, and
MCD12Q1 was used as precision verification data for urban
boundaries. MOD09A1 was used to calculate the imperme-
ability index (IBI).38 The IBI, MOD13A2, MOD11A1, ERA5-
Land reanalysis, WorldPop population density and Harmonized
global nighttime light (NTL) data sets were used for sensitivity
analysis. CHEQ data were obtained from the National Earth
System Science Data Center and used to evaluate the urban eco-
environmental benefits brought byUG. Detailed information on
the data used in this study is shown in Table S4.

2.2. Method Flowchart. The method flowchart and
concept map of this study are shown in Figure S3. The study
process comprises five main parts. First, all data were resampled
to a 1 km resolution. Second, the Global Urban Boundaries data
were combined for all years for maximum value synthesis to
extract the LUB and then verified with MCD12Q1 data. Third,
we synthesized the annual UI, UG and UST after noise removal
by the Savitzky−Golay (SG) filter39 based on the Google Earth
Engine (GEE).40 Fourth, we mapped the sensitivity of UST
(dUST) to a suite of human and natural factors, nighttime light
(NTL), the impermeability index (IBI), normalized difference
vegetation index (NDVI), population density (POP), 2-m air
temperature (TEMP), precipitation (PRE), 10-m wind speed
(WIND), solar radiation (SR) and surface pressure (PRES).
Fifth, based on the statistical relationship of UST, UG and IBI,
that is, Sen_UST, Sen_NDVI and Sen_IBI, we built a model for
the assessment of CPUG, in which the Theil-Sen median was
used to eliminate the influence of natural factors. Finally, we
defined the difference between the simulated Sen_UST (under
the no-UG scenario, taking 2001 as the benchmark) and the
actual Sen_UST as the CPUG in China from 2001 to 2018.

2.3. LUB Extraction. We used MCD12Q1 to verify the
accuracy of the global urban boundaries in China. Figure S4
showed that, except for GUB in 2005, other years are slightly
overestimated because the global urban boundaries are clustered
by impervious surface data. Overall, the global urban boundaries
and MCD12Q1 have good consistency, and the Pearson’s r
(PCCs) of the four years all exceed 0.85, which is applicable for
the extraction of urban boundaries in this study.
We synthesized the maximum value of the global urban

boundaries data and delineated all potential urban boundaries in
China during this period to precisely quantify the CPUG in
China from 2001 to 2018. The calculation formula is as follows:

=
=

=

X

X
LUB

1 if ( 1)

0 if ( 0)

i

i

l
mooo
n
ooo (1)

where the LUB is the largest urban boundary, Xi is the urban
boundary of the ith year, and if the pixel value is 1, the pixel is an
urban area; otherwise, it is not an urban area.

2.4. IBl Index. The spatial pattern of UST is drastically
affected by natural factors and human activities.41 As mentioned
in the introduction, the main natural factors that affect the UST
in the spatial dimension are climate, altitude, latitude, and
topography. Human activities mainly impact UST through
renovation of the underlying surface properties of the urban
area, and the most dramatic changes are urban built-up and
urban green space.42

In particular, the IBI index was proposed by Xu38 in 2008.
Belgian scholars noted that the IBI index has the highest
correlation with UST among the 15 remote sensing indices. At
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the same time, the correlation evaluation between the IBI index
and the famous vegetation index NDVI also ranked first and far
exceeded the second-placed building index. Therefore, we
applied the IBI index to characterize urban impermeability.
In this paper, the MOD09A1 annual average surface

reflectance data after cloud removal were used to calculate the
IBI index. The calculation formula is as follows:

+

+ +

+ + +

+ + +

2

2

SWIR
(SWIR NIR)

NIR
(NIR Red)

Green
(Green SWIR)

SWIR
(SWIR NIR)

NIR
(NIR Red)

Green
(Green SWIR)

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÄ

Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ (2)

where SWIR is the shortwave infrared band, NIR is the near-
infrared band, Red is the red band, Green is the green band, and
IBI is the impermeability index.

2.5. Elimination of the Effects of Natural Factors. As the
United Nations Environment Programme noted at the 26th
United Nations Climate Change Conference, the sharp rise in
UST is caused by the reduction of UG and the expansion of
urban impervious surfaces.42 Natural factors such as climate,
altitude, latitude, and topography cannot change significantly in
a short period of time. Therefore, we believe that the Theil-Sen
median43,44 trend can effectively eliminate the effects of natural
factors on the UST in the system time series dimension from
2001 to 2018.
The Theil-Sen median trend is a rank-based nonparametric

test. Its advantage lies in the ability to test linear or nonlinear
trends.43,44

=
= = +

S X Xsgn( )
i

n

j i

n

j i
1

1

1 (3)

where Xi and Xj are the values corresponding to years i and j in
the system time series, respectively, and n is the length of the
time series data.
As found in previous studies,45 the main factors affecting UST

in the spatial dimension include natural factors and human
activities. We recognize the conclusion of the United Nations
Environment Programme (that is, the sharp rise in UST is
caused by the reduction of UG and the expansion of urban
impervious surfaces) in the systematic time dimension. To prove
this speculation, we combined multisource remote sensing data
with ERA5-land reanalysis data and selected 9 variables, NTL,
IBI, NDVI, POP, TEMP, PRE, WIND, SR and PRES, to explore
the sensitivity of natural factors and human activity factors to
UST (YUST) from systematic time series observations. We
analyzed the multiple regression pixel-by-pixel based on the
partial least-squares regression of 9 variables and normalized the
regression coefficients by the standard deviation of each variable.
All variables were standardized, so they were unitless and
comparable.

= · + · + · + ·
+ · + · + · + ·
+ · +

Y b X b X b X b X
b X b X b X b X
b X C

UST 1 NTL 2 IBI 3 NDVI 4 POP

5 TEMP 6 PRE 7 WIND 8 AIR

9 PRES (4)

= ×Z b S S( / )j j X USTj (5)

where bj is the fitting coefficient between different variables and
UST, while C is the fitting constant. Zj denotes the sensitivity of
UST toward the j-th variable. SXj

and SUST are the standard
deviation of the jth variable and UST, respectively.

2.6. A Conceptual Model for Assessing the CPUG. To
systematically quantify the impact of UG on urban warming, we

Figure 1.Conceptual diagram for quantifying the CPUG by taking Beijing, China as an example. (a) The linear statistical relationship betweenUG and
UI (Pearson’s r = −0.738, p < 0.001) in the observation dimension of system time series, and the change in UI under the no-UG scenario. (b) The
linear statistical relationship between UI and UST under no-UG scenario (Pearson’s r = 0.566, p < 0.001) in the observation dimension of system time
series. And the change in UST under the no-UG scenario. (c) The calculation process of simulated Sen_UST. (d) Sen_UST (light green), Sen_NDVI
(magenta), and Sen_IBI (navy blue) values of pixels (3 by 3) in a window in Beijing. The UST and IBI in this region showed a significant upward trend
from 2001 to 2018, while the NDVI showed a significant downward trend. (e) Time series heat map of UST, IBI, and NDVI in this window from 2001
to 2018.
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first proposed a theoretical framework and provide the necessary
definitions for some parameters. The United Nations (UN)
Handbook42 has shown that a combination of declining
vegetation and increasing impervious surfaces is contributing
to the rise in urban surface temperature (UST). Moreover,
numerous studies46,47 have recognized remote sensing-based
vegetation indices, such as the Normalized Difference
Vegetation Index (NDVI) or Enhanced Vegetation Index
(EVI), as credible indicators of UG growth status. In this
model, NDVI, impermeability index (IBI),38 urban land surface
temperature are used to characterize UG, UI, UST and their
statistical relationships are used to assess the CPUG in China.
Conceptually, the CPUG in a time series can be defined as the
difference between the UST trend in the no-UG scenario and
the actual UST.

= _ _ ·nCPUG (Sen UST Sen UST )no UG obs (6)

where Sen_USTno‑UG is the no-UG scenario UST trend based
on the Theil-Sen Median, Sen_USTobs is the observed UST
trend based on the Theil-Sen Median, and n is the number of
years.
Specifically, the concept of CPUG is extended from a single

pixel to all pixels in urban by designing a no-UG scenario based
on the system time series dimension, setting the NDVI trend
(Sen_NDVI) of a pixel to zero and calculating the change in the
UST trend (Sen_UST) (in eq 1) based on the difference
between the no-UG scenario IBI trend (Sen_IBI) and the
observed one (Figure 1).
First, all pixels as samples fit the linear statistical relationship

between Sen_NDVI and Sen_IBI. Based on this functional
relationship, we calculated the difference between the no-UG
scenario and the observed Sen_IBI, i.e., ΔxIBI (Figure 1a).

= +_ _y A x BSen NDVI 1 Sen IBI 1 (7)

=_ _x y A/Sen IBI Sen NDVI 1 (8)

where xSen_IBI and ySen_NDVI are the Sen_IBI and Sen_NDVI of
the pixel, respectively. A1 and B1 are the coefficients of the linear
fit.
Second, we selected pixels under the no-UG scenario (that is,

pixels whose Sen_NDVI is between −0.0002 and 0.0002) as
samples to fit the linear statistical relationship between Sen_IBI
and Sen_UST. Based on the functional relationship and ΔxIBI,
we calculated the difference between the simulated and the
observed Sen_UST, i.e., ΔySen_UST (Figure 1b). For the
statistical relationship at the national scale, see Figure S5.

= +_ _y A X BSen UST 2 Sen IBI 2 (9)

=_ _y A xSen UST 2 Sen IBI (10)

where ySen_UST is the Sen_UST value of the pixel. A2 and B2 are
the coefficients of the linear fit. For the threshold selection
criteria and their robustness, see Text S2.
Third, the observed Sen_UST was added to ySen_UST to

obtain the no-UG scenario Sen_UST, which is the trend of UST
without the interference of UG (Figure 1c).

= +_ _ _y y ySen UST Sen UST Sen UST (11)

= · _T n ySen UST (12)

where _ySen UST is the no-UG scenario Sen_UST, T is the
CPUG, and n is the number of years.

Specifically, Sen_NDVI and Sen_IBI showed a significant
negative correlation (p < 0.001). Similarly, Sen_UST and
Sen_IBI showed a significant positive correlation (p < 0.001)
under the no-UG scenario. This relationship is depicted visually
through a 3 by 3 window within the Beijing urban area (Figure
1d). In the systematic time series dimension, the NDVI showed
a fast-decreasing trend, while the IBI showed a steadily
increasing trend and so does the UST. which supports the
conclusions presented in the handbook and previous stud-
ies.42,48,49 Further, we can apply the model to all urban pixels in
China and also to urban pixels in each city in China (and finally,
synthesize the results for these cities) to estimate the CPUG in
China during 2001−2018. The UST sensitivity analysis for the
cluster scale is shown in Figure S6.

2.7. Contribution of UG to Curbing Urban Warming.
The trend of UST (δUST) were calculated by Theil-Sen median
(δUSTOBS) and simulated (δUSTSIM) by the framework in order
to assess the UST mitigation effects of biophysical feedbacks of
UG. Specifically, the mitigation contribution rate can be
expressed as the ratio of the greening-induced UST trend to
the rate of urban warming without greening mitigation.

= ×

= ×

CR
UST

UST UST
100%

UST UST
UST

100%

UG

OBS UG
OBS SIM

SIM (13)

where CR is the UST mitigation contribution rate of UG,
δUSTUG is the greening-induced UST trend, δUSTOBS is the
observed UST trend from satellite, and δUSTSIM is the simulated
UST trend from the framework.

2.8. Direct and Indirect Effects of Urbanization on
Vegetation. The direct and indirect effects of urbanization on
vegetation can be quantified using a conceptual framework.5

The direct effect is attributed to the increase in urban
impermeability (β), which results in a decrease in vegetation
indices (e.g., EVI). Thus, in an ideal state, there exists a linear
relationship between EVI and β. This linear relationship is
defined as the zero-impact line that disregards indirect effects.

= +V V V(1 )zi v nv (14)

where Vzi is the theoretical EVI, Vv and Vnv are the mean EVI of
all pixels that are entirely covered by vegetation (β = 0) and
built-up surfaces (β = 1), respectively.
Hence, the direct effect of urbanization on vegetation can be

calculated using the formula below.

= ×
V V

V
100%d

zi v

v (15)

where ωd is the direct effect of urbanization.
In fact, not all pixel distributions align exactly along the line

established by formula 1414. This deviation is attributed to the
effect of urbanization that results from the urban location and
background climate, which affect vegetation health. Therefore,
the indirect effect of the urbanization on vegetation can be
measured using the relative change between theoretical and
observed EVI values of individual pixels.

= ×
V V

V
100%i

obs zi

zi (16)

where ωi is the indirect effect of urbanization and Vobs is the
observed EVI by the satellite.
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3. RESULTS
3.1. The CPUG Map of China during 2001−2018. UG

has shown an upward trend over the past two decades in China.
The average greening trend for the nation was approximately
0.33 ± 4.40 × 10‑3/yr (mean ± a STD of all pixels, as shown in
Figure 2i). Out of the 1804 urban clusters with an area greater
than 10 km2, 1041 urban clusters (57.71%) had a Sen_NDVI
greater than 0 (Figure 2h). At the national scale, the simulated
UST (Sen_UST) (Figure 2b) and urban impermeability trend
(Sen_IBI) (Figure 2f) were slightly higher than those based on
remote sensing observations (for the statistical relationship at
the national scale, see Figure S5). The national average
Sen_UST and Sen_IBI increased by 1.13 ± 11.20 × 10−2 K/
yr (Figure 2a) and 3.40 ± 45.94 × 10−3 /yr (Figure 2e),
respectively, in the no-UG scenario (taking 2001 as the
benchmark). This indicates that UG inhibited UI by 6.18 ±
82.69 × 10−3 and reduced UST by approximately 0.20 ± 2.02 K
(Figure 2j) nationwide, demonstrating that UG not only had a
widespread positive impact on local climate but also had a
significant impact on urban gray space (Text S3).
Spatially, areas with high CPUG include Beijing-Tianjin-

Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta
(PRD) urban agglomeration (Figure 2a,b,e,f,i,j), Taiwan and
other areas with high urbanization levels, as well as the
Northwest and Northeast regions represented by Aksu,
Karamay, and Shenyang City. The North China Plain and the
lower Yangtze River Plain have the lowest CPUG (Figure 2j),
despite having the fastest rising UI andUSTwith a medium level
of urbanization. Further, the analysis suggests that the drivers of

the spatial gradient pattern of CPUG may be complex and
diverse and not solely dependent on the urbanization level.
We further evaluated the CPUGof 79 cities with an area larger

than 500 km2 (Figure S7). The accuracy was validated against
simulated results based on common relationships, as shown in
Figure S8. Information for each index of these cities was
recorded and listed in descending order according to the CPUG
(Table S3). Over the past two decades, the UG in 42 cities had a
cooling potential (Sen_NDVI > 0), primarily located in the
North China region (including the Loess Plateau, BTH urban
agglomeration, Xinjiang, Northeast China) and the PRD urban
agglomeration. Karamay had the highest CPUG, reaching 2.25
± 2.80 K (detailed explanation can be found in Text S4),
followed by three National Forest Cities: Anshan (2.09 ± 2.50
K), Liaoyang (1.99 ± 2.40 K), and Shenyang (1.77 ± 2.66 K)
(Figure S9a). In contrast, cities with CPUG < 0 were mainly
concentrated in the eastern coastal areas, as shown in Figure S7.
We also selected 15 representative cities located in different

climatic zones of China to demonstrate themicrospatial patterns
of the CPUG at the city scale. The CPUG assessment model was
fitted to each city (Figure S10). The CPUG maps of the 15
representative cities (detailed locations can be found in Figure
S11) are shown in Figures S12 and 13. Among the 15 cities, UG
in 9 cities had a positive impact on local cooling. Furthermore,
similar to Sen_UST, the simulated Sen_IBI was higher than the
observed Sen_IBI for these cities (Figure S14). Although six
cities had an overall CPUG of less than 0, their spatial
distribution patterns showed a significant cooling effect in the
urban core area of these cities.

Figure 2. The CPUG map in China from 2001 to 2018 at the 1000-m grid cell scale. (a) Observed Sen_UST in China from 2001 to 2018. (b)
Simulated Sen_UST in China from 2001 to 2018. (c) Box plot of observed and simulated Sen_UST. (d) The spatial relationship between Sen_UST
and Sen_IBI at cluster scale. (e) Observed Sen_IBI in China from 2001 to 2018. (f) Simulated Sen_IBI in China from 2001 to 2018. (g) Box plot of
observed and simulated Sen_IBI. (h) Distribution map of the spatial relationship between Sen_UST and Sen_NDVI at cluster scale. (i) The trend of
UG in China from 2001 to 2018. (j) The CPUG in China from 2001 to 2018. “***” represents a significant difference between the two groups of
samples at least at the 1% level.
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3.2. Anisotropy of CPUG in Urban Core-Sprawl Areas.
We observed a consistent and interesting phenomenon that the
CPUG in the main urban boundaries (MUB), which constitute
the urban core, is higher than that in the grown urban
boundaries (GUB), resulting in a “Fried Egg”50,51 spatial
distribution pattern (Figure S15). The area resembling the

“yolk” has a higher CPUG, which aligns with the spatial
distribution pattern of Sen_NDVI. This observation may be
attributed to the stage of urban development.24,52 Specifically, in
developing regions, UG policies are primarily concentrated in
highly urbanized core areas, as seen in a specific case illustrated
in Figure S16.

Figure 3. Box plots of Sen_IBI (observed, simulated), Sen_UST (observed, simulated), and Sen_NDVI of the GUB and MUB. Time series diagrams
of UI and UG in the GUB andMUB between 2001 and 2018. (a) Observed and simulated Sen_IBI in the GUB. (b) Observed and simulated Sen_IBI
in the MUB. (c) Observed and simulated Sen_UST in the GUB. (d) Observed and simulated Sen_UST in the MUB. (e) Sen_NDVI in the GUB and
MUB. (f) Time series diagram of UI in the GUB. (g) Time series diagram of UI in the MUB. (h) Time series diagram of UG in the GUB. (i) Time
series diagram of UG in the MUB. “***” represents a significant difference between the two groups of samples at least at the 1% level.
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Figure 3 demonstrates the heterogeneity of CPUG in the
MUB and GUB, revealing that the trend of vegetation greening
in the MUB area (2.76 ± 3.46 × 10−3/yr) is much greater than
that in the GUB (0.13 ± 4.41 × 10−3/yr) (Figure 3g). The
vegetation greening in the MUB shows a rapid upward trend

(Figure 3d), while that in the GUB displays a U-shaped
characteristic (Figure 3a); which can be explained by the
Environmental Kuznets Curve (EKC).53 In particular, the
urbanization of the MUB area reached a mature stage during
2001−2018, whereas the GUB is still in the stage of rapid

Figure 4. The UG contribution to curb urban warming. (a) The map of UG contribution to curb urban warming at the 1000-m grid cell scale. (b)
Spatial distribution map of CPUG in different types of climatic backgrounds at the cluster scale. (c) Spatial distribution of UG contribution to curb
urban warming in different climatic backgrounds at the cluster scale. (d) The relationship between CPUG and contribution to curbing urban warming
at the provincial scale. (e) The relationship between CPUG and contribution to curbing urban warming at the city scale. (f) The statistical relationship
between climate background andCPUG. (g) The relationship betweenCPUG and contribution to curbing urban warming at the county scale. (h) The
relationship between CPUG and contribution to curbing urban warming at the cluster scale in the climate background. (i) The statistical relationship
between climate background and contribution to curbing urban warming. (j) Box plot of contribution to curb urban warming in the GUB and MUB
areas. Note: “PCT.” is an abbreviation for “Percentage”.
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development. Hence, residents of the MUB have more pressing
needs for a high-quality living environment, forcing managers to
implement more UG projects.54 In addition, the observed
Sen_IBI of the GUB (0.64 ± 2.87 × 10−3/yr) was higher than
that of the MUB (−1.09 ± 2.12 × 10−3/yr) (Figure 3h,k),
indicating that the impermeability of the MUB decreased over
the past two decades (Figure 3e), while that of the GUB area has
minutely increased (Figure 3b). The simulated Sen_IBI of the
GUB (0.78 ± 3.68 × 10−3/yr) was lower than that of the MUB
(1.79 ± 3.14 × 10−3/yr), and the difference between the
simulated and observed Sen_IBI of the GUB (0.14 ± 4.24 ×
10−3/yr) was much smaller than that of theMUB (2.88± 3.62×
10−3/yr).
Similarly, the observed Sen_UST of the GUB (7.06 ± 8.56 ×

10−2 K/yr) was higher than that of theMUB (4.39± 6.29× 10−2

K/yr) (Figure 3i,l). The simulated Sen_UST of the GUB (7.84
± 3.68 × 10−2 K/yr) was lower than that of the MUB (9.98 ±
6.64 × 10−2 K/yr). The difference between the simulated and
observed Sen_UST of the GUB (0.78± 10.85× 10−2 K/yr) was
much smaller than that of the MUB (5.59 ± 8.51 × 10−2 K/yr).
The CPUG in the MUB (1.01 ± 1.53 K) was 7.2 times greater
than that in the GUB (0.14± 1.95 K), indicating that the CPUG
in developed regions is more prominent than that in developing
regions, which further confirms our above findings and further
proving the validity of the EKC.53

We further analyzed the relationship between urban
expansion rates and CPUG at the provincial, city, and county
scales from 2001 to 2018 (Figure S17). We revealed that, at all
scales, CPUG is significantly negatively correlated with the
speed of urban expansion. Additionally, we tallied the number of
provinces, cities, and counties with CPUG greater than or less

than 0, and found that more than 60% of these regions had a
CPUG greater than 0 in both MUB and GUB. Furthermore, we
observed that, across different scales, the proportion of regions
with a CPUG greater than 0 was higher in MUB than in GUB.
This suggests that a higher level of spatial urbanization has a
positive impact on the CPUG spatial gradient pattern.

3.3. Contribution of UG to Curbing Urban Warming.At
a national level, UG has curbed the warming trend by 14.17%
over the past two decades (Figure 4a), which is much higher
than the 4.6% reported in a recent study.55 Impressively, UG
contributed 56.08% to the reduction of urban warming in the
MUB and 9.93% in the GUB areas. The high contribution areas
at a national level were mainly located in the urban
agglomerations of BTH (10.29%), YRD (−68.92%), and PRD
(46.11%) (Figure 4a). At the regional scale, the areas that
significantly curb urban warming are mainly located in northern
China, including the Loess Plateau, the Northwest Arid Zone,
and the Northeast (Figure 4c), which is consistent with the
spatial distribution pattern of the CPUG (Figure 4b).
Furthermore, we observed a significant positive relationship
between CPUG and the contribution of UG in curbing urban
warming at different scales (Figure 4d,e,g,h). Of the four climate
zones, the arid zone had the highest CPUG and its contribution
to reducing urban warming was 1.00 K and 50.63%, respectively
(Figure 4f,i). These results suggest that UG has a more
widespread positive effect on local climate in regions with
limited water availability, which is contrary to the conclusions
reached in a recent study.56

Figure 5. Direct (ωd) and indirect (ωi) effects of urbanization on vegetation in China from 2001 to 2018 in the climate background. (a−e) Indirect
effects of urbanization on vegetation. (f−j) Direct effects of urbanization on vegetation. (k−o) The relationship between EVI and urbanization.
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4. DISCUSSION
Cities have long been known as “growth machines” and now
contribute to 90% of global GDP, yet they also account for 75%
of global carbon emissions,23 and urban warming rates is twice
the global average.42 The Paris Agreement aims to limit the
global warming trend to 1.5 °C,57 and cities, as “natural
laboratories” for global climate change,5 must develop a generic
cooling strategy to curb their warming trends. This is especially
important given rapid urbanization,19 dramatic climate
change,58 and frequent climate extremes.59 Furthermore,
previous studies that used carbon metrics to evaluate the UST
mitigation potential of greening have been subject to significant
uncertainties, particularly in urban areas.60 Therefore, it is
necessary to use surface temperature sensitivity to quantify the
UST mitigation potential of UG, which effectively integrates the
biogeochemical and biophysical effects of vegetation. Therefore,
the study presents a quantitative assessment model of the long-
term impact of UG on curbing urban surface warming. By
mapping the benefits of implementing UG, it can assist
governments in prioritizing investments to maximize climate
benefits.
Overall, the study provides compelling evidence that long-

term UG has effectively curbed urban warming in China by
14.17% over the past two decades, a figure that exceeds any
previous study.55,61 Specifically, we found that UG contributed a
staggering 56.08% to curbing urban warming in the MUB,
compared to 9.93% in the GUB. This phenomenon can be
attributed to the direct (negative) and indirect (positive) effects
of urbanization on vegetation,24 as depicted in Figure 5. The
figure shows that the indirect effects of urbanization on
vegetation increase with increasing impermeability (β) (Figure
5a−e), while the indirect and direct effects of urbanization on
vegetation increase and decrease with the increasing year
(Figure 5a−j), respectively, in different climatic zones. We
revealed that the indirect effects were higher in areas with high
urbanization levels (β > 0.5), while the direct effects were lower.
Here, the promoting effect of urbanization on vegetation is
mainly reflected in the intensive management of urban
vegetation rather than the greenhouse effect of carbon dioxide
(see Text S5). This underscores the importance of considering
the level of urbanization as a critical factor influencing the
climatic effects of the CPUG and provides valuable insight into
where trees should be planted to achieve the maximum climate
benefits.13 Nonetheless, we also discovered that significant
disparities in urbanization between core-sprawl areas resulted in
substantial inequalities in CPUG exposure. Regions with higher
income, resource consumption, and pollution emissions were
more susceptible to CPUG, affecting a population of 506million
people (detailed explanation see Text S6). This highlights the
need for policymakers to consider the trade-offs and synergies
between developing urban warming solutions and promoting
social equity to build inclusive, safe, resilient, and sustainable
cities.62

On the other hand, our study provides evidence that UGs in
cities associated with ecological restoration projects (ERPs)
have significant UST mitigation potential,63−65 except in highly
urbanized areas (Figures S12−14). To quantify the impact of
ERPs on CPUG, we present a high-precision Chinese ecological
quality assessment model (Text S6) and provide empirical
statistical evidence (Figure S18). Our findings suggest that ERPs
not only promote the greening of forest vegetation but also
contribute to CPUG (Text S8 and Figure S19), providing new

evidence for the recent controversy surrounding this issue.14,66

By improving our understanding of the mechanisms by which
ERPs influence the distribution patterns of CPUG across the
country, our study demonstrates the potential of ERPs for future
adaptation to continuing global urban warming trends.
In brief, this study introduces a solid model to assess the

impact of long-term greening on local cooling. The model
results reveal general patterns of UG on local cooling and
quantify the contribution of CPUG to urban warming in China
over the past 20 years, and further highlight the need for effective
management of urban vegetation as a climate mitigation
strategy. This study improves transparency in accounting for
the climate benefits of UG at a national scale, and the proposed
model can be widely applied to other regions of the world to
assess the UST mitigation impacts of implementing nature-
based solutions.
The study has some caveats that should be mentioned. First,

quantifying spatial variations in urban green space density,
compactness, and spread shape using NDVI data is challenging,
and different green space structures may lead to complex
differences in CPUG. Moreover, other environmental factors,
such as tree species composition, air pollutants, and nitrogen
deposition, can also influence the growth of urban vegetation.
Additionally, while NDVI retains the same change trend
compared to other vegetation indices (Figure S20), differences
between vegetation indices can also affect CPUG. Second, the
analysis only quantifies the empirical statistical impact of UG on
local cooling and ignores biophysical feedback mechanisms.
Finally, satellite observations of surface temperatures were used
as thermal conditions, but near-surface air temperatures may be
more relevant to human living conditions. However, obtaining
air temperature estimates often requires complex assimilation
methods or statistical models combined with in situ observa-
tions, which can result in potentially large data uncertainties.67

Most earth system models lack the ability to describe the direct
role of humans in regional greening in complex model
inference,22 which makes the air temperature data based on
earth system models may not be able to objectively reveal the
cooling effect of vegetation due to human land use practices.
Therefore, multidomain cross-collaborative studies are neces-
sary once high-resolution data on these factors become available
on a global scale.
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In order to enhance the efficiency of CPUG calculations, we
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convenient simulation of UST changes in various cities across
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