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A B S T R A C T   

Multiple natural and anthropogenic factors jointly drive the spatial distribution of soil organic carbon (SOC) and 
its dynamics in croplands. Among these factors, agricultural management practices have caused considerable 
impacts. Previous studies on the driving factors of SOC in croplands have provided significant understanding on 
this matter. However, whether and how the effects and interplay of these drivers change over time is often 
unknown, especially agricultural activities. To measure the effects of agricultural management practices on the 
spatial distribution and temporal change of SOC incorporating the network relationships with other natural 
drivers at the regional scale, we conducted partial least squares path analysis on the topsoil organic carbon 
content using two historical soil datasets from cropland samples in East China obtained during the 1980s and the 
2010s. Eight indicators and their temporal changes reflecting climate, agricultural management, and edaphic 
conditions were used to quantify the driving mechanisms of the spatial distribution and temporal change of SOC. 
The drivers of SOC distribution showed that high SOC was mostly distributed in soils with a relatively low pH 
and high clay content in warm humid climates. High SOC was associated with the application of N fertilizer, crop 
residue input, and agricultural machinery in the 1980s and 2010s. The effect of N fertilization on SOC distri-
bution increased from the 1980s to the 2010s, whereas the total edaphic effects significantly decreased from 0.62 
to 0.25 (P < 0.01). Regarding the drivers of SOC change over the three decades, the edaphic effects presented the 
strongest effect (path coefficient of 0.74, P < 0.01), including the negative effects of topsoil acidity and baseline 
SOC level, as well as the positive effects of total nitrogen (TN) and clay content change. Croplands with lower 
intensity of management practices in the 1980s generally attained more development in agricultural moderni-
zation, which led to a considerable SOC increase. Our research revealed the importance of agricultural man-
agement practices on the spatial distribution and temporal change of cropland SOC at the regional scale. The 
results emphasize the need to measure the changing driving mechanisms of SOC dynamics. The findings indicate 
that indicators reflecting the effects of agricultural management practices should be included in digital mapping 
and process-based modeling of soil carbon at different spatiotemporal scales to improve prediction accuracy.   

1. Introduction 

Soil organic carbon (SOC), along with its quality and dynamics are 
crucial for soil multifunctionality, global C cycle, and ecosystem services 
(Kopittke et al., 2022; Lal, 2016; Wiesmeier et al., 2019). Soil C 
decomposition and sequestration processes are vulnerable to climate, 
topography, biotic activity, and human-induced disturbances. An 

increasing number of studies have discussed the driving mechanisms of 
the spatial distribution and/or the temporal change of SOC from site- to 
global-scale (O’Rourke et al., 2015; Wiesmeier et al., 2019). Previous 
studies on the climatic sensitivity of SOC (e.g., Carvalhais et al., 2014; 
Davidson and Janssens, 2006; Hartley et al., 2021) and soil physi-
ochemical interactions (e.g., Bosatta and Ågren, 1997; Doetterl et al., 
2015) have provided mechanistic insights into SOC mapping and Earth 
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system modeling (Luo et al., 2016). Human activities have been het-
erogeneously intensifying across terrestrial ecosystems. However, their 
role in the regulation of SOC dynamics coupled with environmental 
interference have not been fully examined. In the context of global 
warming and food security problem, it is important to clarify the manner 
through which the natural environment and human activities interact to 
drive SOC dynamics. This information can be used to provide guidance 
for a rational land management, considering C sequestration and plan-
etary survival. 

Croplands occupy a large part of the global land area and present 
substantial C sequestration potential (Zomer et al., 2017). They have 
become the ecosystem most intensively affected by human interference 
worldwide. The SOC in croplands usually changes faster than that in 
natural ecosystems because of the implementation of agricultural 
management practices. Several studies have elucidated the effects of 
various agricultural management practices on SOC, including the effects 
of chemical and manure fertilization (Mayer et al., 2022; Ren et al., 
2021; Yang et al., 2022), tillage strategies (Cui et al., 2022; Kan et al., 
2021; Zhang et al., 2023), irrigation (Amorim et al., 2021), crop residue 
incorporation (Berhane et al., 2020; Haas et al., 2022; Lu, 2015), and 
cover cropping (Hu et al., 2023; Jian et al., 2020; Vendig et al., 2023). 
However, most assessments focus on a single type of agricultural man-
agement practice or crop species. Moreover, these studies are restricted 
to site-level field experiments (Das et al., 2022; Sanaullah et al., 2020; 
Xu et al., 2020) or are based on meta-analyses through the collection of 
various datasets (Wooliver and Jagadamma, 2023; Zheng et al., 2023). 
This has led to an ongoing interest regarding the impacts of agricultural 
activities on SOC and the associated changes. Further regional to global 
scale spatial analyses and modeling are necessary to assess the role of 
agriculture in SOC dynamics. In addition, agricultural management 
practices not only directly influence SOC, but also jointly control SOC 
through interconnections with environmental conditions (such as 
climate and topography), microbial processes, and soil geochemistry. 
The direct and indirect effects of agricultural management on SOC 
should be quantified to clarify the mechanisms driving SOC dynamics in 
agricultural ecosystems. 

Agricultural activities are diverse and constantly changing along 
with advances in technology and changes in policies (Jiao et al., 2018). 
For example, the application of chemical fertilizers has boosted sub-
stantially because of their efficiency in grain production (Li et al., 2013). 
Moreover, plows have been gradually replaced by tractors to improve 
tillage efficiency, along with the application of other agricultural ma-
chinery, such as combines, sprayers, and planters (Liao et al., 2022; Shi 
et al., 2021). However, the changes in the relationships between SOC 
and the changing agricultural activities over time remain unclear. Under 
the severe circumstances of global warming, food security, and land 
degradation (IPBES, 2018; IPCC, 2019; Prăvălie, 2021), the temporal 
changes in the driving mechanisms of SOC dynamics should be quanti-
fied to help in mapping and modeling of soil C processes in croplands 
and in formulating solutions to enhance agriculture production and soil 
climate mitigation (Amelung et al., 2020). 

The Yangtze River Delta is one of the most developed regions of 
China. Because of its suitable climatic conditions and intense imple-
mentation of agricultural management practices, this region is an 
important grain-producing area in China. Rapid urbanization and agri-
cultural modernization have occurred after the 1980s in this region 
(Yang et al., 2021; Zhang et al., 2022). Agricultural activities were 
constantly strengthened because of the considerable economic devel-
opment, but they were restrained in some regions owing to the trans-
formation from cropland to industrial and urban lands. The content of 
organic carbon in soils with different physical and chemical character-
istics is affected by various agricultural management practices and their 
changes over the years (Deng et al., 2018; Zhao et al., 2018), which 
interacted with the effects of climate. Therefore, anthropogenic and 
natural influences on SOC over time can be identified in this region at a 
large regional scale. The topsoil is the layer of cropland soil most 

affected by agricultural management. In this study, we collected two 
historical soil datasets sampled in the 1980s and 2010s and a series of 
environmental indicators reflecting the climate, agricultural manage-
ment, and soil physiochemical conditions in the Yangtze River Delta 
region. We conducted partial least squares path analyses of SOC content 
(at the standardized depth of 0–20 cm) in the 1980s and 2010s, as well 
as the SOC change during these 30 y, by using the abovementioned 
observational data to answer the following questions: (1) How do cli-
matic, edaphic conditions, and agricultural management practices 
control the spatial distribution of SOC in croplands at the regional scale? 
(2) Have the driving mechanisms of SOC distribution changed between 
the 1980s and the 2010s? (3) How do these drivers jointly control the 
temporal change in SOC content under long-term agricultural 
intensification? 

2. Materials and methods 

2.1. Study area 

The Yangtze River Delta region administratively covers three 
province-level divisions of East China including Jiangsu, Zhejiang, and 
Shanghai (27◦02′− 35◦08′N, 116◦21′− 123◦10′E) (Fig. 1). The study area 
covers ~219,000 km2 and it has warm and humid subtropical monsoon 
climate. The annual average temperature is 13–18 ℃, and the annual 
precipitation is 700–2000 mm. The elevation ranges from 0 to 1926 m in 
this region. Over 80% of Jiangsu consists of flat plains, whereas most 
mountains and valleys are distributed in Southern Zhejiang. This region 
is suitable for agriculture and has become one of the most important 
grain-producing regions in China. Croplands are the major land use type 
in this region, and the elevation ranges from 0 to 1625 m. With a long 
cultivation history and rapid socio-economic development, agricultural 
management practices and techniques have been widely applied in the 
Yangtze River Delta region. From the 1980s to the 2010 s, the grain yield 
per unit of arable land nearly doubled under the influence of agricultural 
intensification. Agricultural machinery, chemical fertilization, and crop 
straw/stover return have been advocated since the 1980s. 

2.2. Soil sample data 

We used two soil datasets from the 1980s and the 2010 s in our 
analysis. Sample data from the 1980s were digitalized from records of 
Soil Species of China, which was based on the Second National Soil 
Survey of China (Office for the Second National Soil Survey of China, 
1993). These data were used to investigate typical soil species based on 
the Chinese soil genetic classification. Sample data from the 2010 s were 
obtained from Soil Series of China, which was compiled after the National 
Soil Series Survey from 2009 to 2019 (Huang and Pan, 2017; Ma and 
Zhang, 2017; Yang, 2017). These data were used to investigate typical 
soil series based on the Chinese soil taxonomic classification. Each soil 
sampling point included the soil physiochemical properties measured 
for different soil layers of a typical soil profile. A typical soil profile was 
sampled based on the characteristics of its corresponding soil type and 
its natural environmental conditions. Detailed descriptions of the loca-
tion, topography, sampling date, land use type, and crop types of each 
profile were also recorded. We assembled 128 soil observations from the 
1980s and 141 from the 2010s for the entire study area. The spatial 
distribution of the sampling points is shown in Fig. 1. 

Soil properties at each sampling point were standardized for the 
topsoil depth of 0–20 cm because of the unequal depths of soil layers of 
different sampling profiles. These properties included soil organic mat-
ter content (SOM, g kg-1), clay content (%), total nitrogen content (TN, g 
kg-1), and soil pH. The soil properties of many points were measured at 
the depth of 0–20 cm or were measured in too few soil layers to fit a 
spline curve along the profile to standardize. Therefore, we adopted a 
linear transformation approach to process as per the following 
equations: 
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SP20 =

∑n

i=1
SPdi × di + SPdj ×

(
20 − dj

)

20
(1)  

pH20 = − lg

∑n

i=1
10− pHdi × di + 10− pHdj ×

(
20 − dj

)

20
(2)  

where SP20 represents the value of topsoil properties such as SOM, clay, 
and TN at the depth of 0–20 cm; and di is the depth of a soil layer less 
than 20 cm. When the next soil layer is deeper than 20 cm, dj represents 
the depth of the final soil layer. Soil pH was standardized using Eq. (2) 
because of the logarithmic relationship between pH and H+ ions. SOM 

was converted to soil organic carbon content (SOC, g kg-1) by a divisor of 
1.724 for follow-up processes. 

2.3. Climatic indicators 

Table 1 lists the drivers and indicators used in this study. Mean 
annual precipitation (MAP) and mean annual average ground surface 
temperature (MGST) for the decade prior to the sampling time were 
obtained from the National Meteorological Dataset of China from the 
Resource and Environment Science and Data Center (RESDC) of the 
Chinese Academy of Sciences (https://www.resdc.cn) as climatic 
indicators. 

Fig. 1. The spatial distribution of the soil sampling points in the Yangtze River Delta region of East China. The red dots are from the 1980 s (128 soil observations) 
and yellow dots are from the 2010 s (141 soil observations). The elevation of croplands was extracted from the ASTER GDEM V3. 

Table 1 
Main drivers of SOC content and their indicators used in this study.  

Driver Indicator Unit Dataset Data source 

Climate Mean annual precipitation 
(MAP) 

mm National meteorological dataset of China Resource and Environment Science and Data Center 
(RESDC), Chinese Academy of Sciences (https://www. 
resdc.cn) Mean annual average ground 

surface temperature (MGST) 
℃ 

Agricultural 
management 

N fertilizer use rate g N m-2 

yr-1 
Historical nitrogen fertilizer use in China (Yu et al., 2022) 

Total power of agricultural 
machinery 

kW ha- 

1 
China County-level Rural Economic Statistical 
Summary and Provincial statistical yearbooks 

China Socio-Economic Big Data Research Platform 
(https://data.cnki.net/) 

Crop residue input t ha-1 

Soil 
physiochemistry 

Total nitrogen (TN) g kg-1  The second National Soil Survey and the National Soil 
Series Survey Clay content % 

Soil pH   
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2.4. Agricultural management indicators 

We selected three indicators to represent agricultural management 
practices: N fertilizer use rate, total power of agricultural machinery, 
and crop residue input. N fertilizer use rate was obtained from Historical 
nitrogen fertilizer use in China from 1952 to 2018 dataset (Yu et al., 2022). 
County-level grain yield, total power of agricultural machinery, and 
grain-sown area data from the China County-level Rural Economic Sta-
tistical Summary and provincial statistical yearbooks were used to 
calculate the mean grain yield and total power of agricultural machinery 
per unit grain sown area for each county. 

The crop residue input was calculated based on the grain yield data. 
For each crop type, the crop residue input was from crop straw/stover 
and crop root, which were estimated using Eqs. (3) and (4), as proposed 
by Zhao et al. (2018). 

RRs = GY ×
1 − WC
GSratio

× α × 0.45 (3)  

RRr = GY ×
1 − WC
GSratio

× RSratio × 0.45 (4)  

where RRs and RRr represent the residue input from straw/stover and 
root of a crop type, respectively. GY represents the grain yield of a 
county. WC is the water content of the crop type. GSratio and RSratio are 
the grain:straw and root:straw ratios of the crop type, respectively. α is 
the straw/stover return ratio at the different time. Finally, 0.45 is the 
conversion factor for converting crop biomass to SOC content (Fang 

et al., 2007). 
Agricultural management practices vary between cropping systems. 

Based on the descriptions in Soil Species of China and Soil Series of China, 
we determined the main crop types and rotations in the study area for 
each sampling point. For the 1980 s’ data, we classified the main crop 
rotations as: “Single-season rice,” “Rice-Rape (Wheat),” “Rice-Wheat,” 
“Wheat.” For the 2010 s’ data, we defined four groups, namely “Single- 
season rice,” “Rice-Rape (Wheat),” “Rice-Wheat,” “Wheat-Maize.” When 
there was more than one crop type, the crop residue input was calcu-
lated as the mean value. The water content, grain:straw ratio and root: 
straw ratio of the crop types used in this study are listed in Table S1. The 
α for each crop type was set based on a previous study (Liu and Li, 2017). 

2.5. Linking soil datasets in the 1980s and 2010s to model SOC change 

To overcome the absence of repeated soil sampling, we adopted a 
sampling point-pairing approach to simulate the temporal changes in 
SOC content over the 30 y. In the Soil Series of China, every typical soil 
profile was sampled based on a reference soil species, so the soil series 
corresponded to the reference soil species in terms of physiochemical 
properties and environmental conditions. Based on this correlation, we 
established the links between soil series and soil species, and linked the 
soil sample data from the 2010 s to those from the 1980s to model SOC 
change. Every pair of sampling points should fall within the same 
province to avoid differences in statistical caliber. If more than one soil 
series matched the same soil species, the point within the same county as 
and/or closest to the soil species point was selected. After removing the 

Fig. 2. The spatial distribution of the paired sampling points. Dots with same serial numbers are points paired together. Numbers in black are from the 1980s, and 
red from the 2010 s. 
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points that did not meet the requirements, we obtained 51 paired 
sampling points, which precisely matched unique reference soil species. 
The paired sampling points are shown in Fig. 2. 

2.6. Statistical analyses 

The SOC datasets were tested for normal distribution using the 
Shapiro-Wilk normality test and for homogeneity of variances using 
Levene’s test. It showed that the SOC datasets were not normally 
distributed. Therefore, a non-parametric Kruskal-Wallis test was used to 
conduct the one-way analysis of variance (ANOVA) to test whether SOC 
samples differed between the main crop rotations by ranks. A significant 
Kruskal-Wallis test indicates that there are at least one group of SOC 
stochastically dominates one other group. If so, another non-parametric 
Dunn’s test with Bonferroni correction was used to identify the differ-
ences between specific pairs of groups using rank sums. All statistical 
analyses were performed using the rstatix package (Kassambara, 2023) 
in R 4.2.3 (R Core Team, 2023). 

2.7. Path analysis 

We used a hypothesis-oriented partial least squares path model (PLS- 
PM) to measure the direct and indirect effects of climate, agricultural 
management practices and soil properties on SOC. PLS-PM is a type of 
structural equation models (SEM) based on the partial least squares 
approach (PLS) (Mateos-Aparicio, 2011; Sanchez, 2013). Conventional 
covariance-based SEMs aim to fit a model and reproduce the observed 
covariances, so that statistical inferences are highly related to the 
distributional assumptions of the observed data. PLS-PMs are considered 
an approximation of the ground truth to predict without imposing 
distributional assumptions on the data. PLS-PM provides a practical 
summary of the manner through which the dependent variables are 
systematically explained by their indicators. 

A PLS-PM is composed of a set of latent variables and their corre-
sponding manifest variables, which is linked by the potential paths be-
tween latent variables indicating their correlation relationships. The 
correlations between latent variables are measured by path coefficients. 
In our study, a latent variable is considered the cause of the manifest 
variables, which is called a reflective mode. The correlations between 
latent and manifest variables are measured by loadings, which build the 
outer model. The network of latent variables is referred to as the inner 
model. 

According to the “Clorpt” equation of soil formation (Jenny, 1994), 
the hypothesis is as follows. The spatial distribution of SOC is influenced 
by climate, agricultural management, and soil physiochemistry. We 
considered six latent variables in our PLS-PMs to build a path frame-
work, namely “Climate,” “Fertilizer,” “Machinery,” “Soil,” “Residue,” 
and “SOC.” “Climate” was measured by MAP and MGST. “Soil” was 
measured by clay content and soil pH. TN was excluded from “Soil” to 
reduce the multicollinearity attributed to its high correlation with SOC. 
Other latent variables were measured by their single corresponding 
manifest variable. All five latent variables jointly influenced “SOC.” 
“Climate” also influenced “Residue” and “Soil.” “Machinery” and “Fer-
tilizer” simultaneously influenced “Residue” and “Soil.” Whereas “Res-
idue” received an effect from “Soil.” Negative loadings were converted 
to positive by using the opposite number of indicators. A non-parametric 
bootstrap validation method was used to evaluate the robustness of the 
path coefficients and identify the precision of the model fit. M samples 
(M = 100 in this study) were randomly created by replacing observa-
tions from the original datasets. Each sample was the same size as the 
original sample. Then, M estimates were obtained for the path co-
efficients. The bootstrap mean values, standard errors, and 95% confi-
dence intervals were used as auxiliary indices to the t-test to determine 
whether a path coefficient was robust. 

For the paired data, we fitted a PLS-PM to model relationships be-
tween SOC change and climate, agricultural management, soil 

physiochemistry, and possible changes in these main drivers of SOC. We 
considered six latent variables: “Climate,” “Initial Agriculture,” “Agri-
cultural Intensification,” “Baseline SOC,” “Soil,” and “SOC Change.” 
“Initial Agriculture” consisted of N fertilizer use rate, total power of 
agricultural machinery, and crop residue input in the 1980s, and it 
represented the initial agricultural level before SOC change. “Agricul-
tural Intensification” was measured by the differences in the three 
agricultural indicators from the 1980s to the 2010 s so as to represent 
the level of agricultural intensification. “Baseline SOC” was the SOC 
content in the 1980s “Soil” consisted of clay content change and TN 
change, as well as pH in the 1980s. All five latent variables jointly 
influenced “SOC Change.” “Climate” also influenced “Baseline SOC” and 
“Soil.” “Initial Agriculture” influenced “Agricultural Intensification,” 
“Baseline SOC,” and “Soil.” Bootstrap validation was performed to test 
the robustness of model fitting. The PLS path modeling was performed 
using the plspm package (Sanchez, 2013) in R 4.2.3 (R Core Team, 
2023). 

3. Results 

3.1. Statistical characteristics of SOC content in the 1980s and 2010 s in 
the Yangtze River Delta 

The SOC content of the 1980s dataset ranged from 2.73 to 
33.37 g kg-1, whereas that of the 2010 s dataset ranged from 3.04 to 
40.08 g kg-1. The frequency distribution of SOC for the two datasets is 
illustrated in Fig. 3a. Table 2 lists the descriptive statistics of SOC. The 
results show that the average SOC content in the 2010 s was higher than 
that in the 1980s in the Yangtze River Delta region and in each of the 
three provinces. This indicated that SOC stocks in this region likely 
increased, which is consistent with previous estimations (Huang and 
Sun, 2006; Zhao et al., 2018). Although the standard deviation (SD) of 
SOC in the 2010 s was higher than that in the 1980s, the coefficient of 
variation (CV) of SOC in the 2010 s was lower than that in the 1980s. 

As for the selected paired sampling points, the average SOC content 
in the 1980s and 2010 s was 13.14 and 16.07 g kg-1, respectively. The 
frequency distribution was similar to that of the entire datasets (Fig. 3b), 
which implied that this subset could be a representative sample of the 
entire datasets. The SOC change ranged from − 12.50 to 30.46 g kg-1, 
with an average of 2.92 g kg-1, which indicated that SOC tended to in-
crease throughout the three decades. 

3.2. Statistical characteristics of the indicators of main drivers of SOC 
content 

Table 2 shows the descriptive statistics of the indicators of main 
drivers used in this study. Generally, the indicators changed direction-
ally from the 1980s to the 2010 s. In the context of global warming, the 
average value of MGST increased from 17.74 to 18.25 ℃. Agricultural 
management indicators increased substantially under the agricultural 
modernization process. The average rate of N fertilizer use increased 
from 11.41 to 19.39 g N m-2 yr-1. Total power of agricultural machinery 
boosted from 1.89 to 8.79 kW ha-1. The average crop residue input 
increased from 0.60 to 2.36 t ha-1. The variability of agricultural man-
agement indicators represented by coefficient of variation (CV) 
decreased respectively as their standard deviation increased. For soil 
properties, clay content and soil pH decreased especially for pH. The 
statistical characteristics of TN were very consistent with SOC. 

3.3. SOC content under different crop rotations and management 
practices 

The sampling points in this study were distributed across croplands 
with four types of main crop rotations, in areas characterized by 
particular agricultural management practices. Boxplots of the SOC 
content of the sampling points under different main crop rotations are 
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presented in Fig. 4. The vertical gray lines under the boxes indicate the 
overall average SOC of the dataset. The results showed that sampling 
points planted with wheat in the 1980s presented a SOC value lower 
than the average value. In the 2010 s, this gap decreased, and the SOC 
was distributed more randomly among the rotation types. 

We conducted a non-parametric one-way ANOVA using the Kruskal- 
Wallis test for the non-normally distributed datasets. Significant differ-
ences were observed in each dataset. The results of the Dunn’s test 
further explained where the stochastic dominance occurred. In the 

1980s, the SOC of upland soils planted with wheat was significantly 
lower than that of all other types of paddy soils. There were no signifi-
cant differences between the paddy soils dominantly planted with rice 
(other three main crop rotations). In the 2010 s, croplands under wheat- 
maize rotations were significantly different from those under rice-rape 
rotations or planted with single-season rice. Croplands under rice- 
wheat rotations also showed significant difference from croplands 
planted with single-season rice, because of the higher SOC in the latter 
compared to the values in the 1980s. These results indicated that crop 

Fig. 3. (a) The frequency histograms of the SOC content (g kg-1) in the 1980s and 2010 s, respectively. Red bars stand for the sampling points in Jiangsu Province. 
Green bars stand for Shanghai and blue stand for Zhejiang. (b) The frequency histograms of the SOC content (g kg-1) in the 1980s and 2010 s of the paired sam-
pling points. 

Table 2 
Descriptive statistics of SOC and the indicators of main drivers used in this study.   

MGST 
(℃) 

MAP 
(mm) 

Fertilizer 
(g N m-2 yr-1) 

Machinery 
(kW ha-1) 

Residue 
(t ha-1) 

Clay 
(%) 

pH TN 
(g kg-1) 

SOC 
(g kg-1) 

Min 1980s  15.71  816  0.92  0.61  0.38  3.14  5.30  0.30  2.73 
2010s  16.18  799  3.23  3.34  1.16  4.69  4.22  0.26  3.04 

Max 1980s  20.41  1976  26.17  5.14  0.88  62.75  8.70  3.42  33.37 
2010s  21.61  2021  36.35  26.06  3.64  53.63  8.66  4.43  40.08 

Mean 1980s  17.74  1196  11.41  1.89  0.60  26.66  6.91  1.38  13.29 
2010s  18.25  1143  19.39  8.79  2.36  21.00  6.60  1.41  15.11 

SD 1980s  1.13  268  5.23  0.91  0.10  11.99  0.99  0.60  6.12 
2010s  1.29  219  7.65  4.21  0.36  10.04  1.11  0.62  6.52 

CV (%) 1980s  6.40  22.39  45.86  48.01  16.07  44.97  14.26  43.75  46.04 
2010s  7.07  19.21  39.43  47.90  15.34  47.82  16.83  43.66  43.19 

*SD: standard deviation; CV: coefficient of variation; Fertilizer: N fertilizer use rate; Machinery: total power of agricultural machinery; Residue: crop residue input. 

Fig. 4. The SOC content of sampling points under different main crop rotations in the 1980s (left) and the 2010 s (right). The vertical gray lines show the overall 
average SOC content of the dataset. Significance marks for Dunn’s multiple comparisons test: * ** *, P ≤ 0.0001; * ** , P ≤ 0.001; * *, P ≤ 0.01; * , P ≤ 0.05. 
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rotations influenced SOC distribution, which could be attributed to the 
amount of crop residue return or the corresponding agricultural man-
agement practices for each crop type required. 

3.4. Direct and indirect effects of indicators on SOC distribution in the 
1980s and 2010s 

We conducted a PLS path analysis of the sample data from the 1980s 
and the 2010s using the same inner model structure. The fitted PLS-PMs 
for SOC distribution in the 1980s and 2010 s are shown in Fig. 5a and c. 
The PLS-PM explained 44% of the variance in SOC of the 1980s dataset 
(R2 = 0.44). Soil properties had the strongest positive effect on SOC, 
with a total effect of 0.62, followed by climate (0.38). The climatic effect 
on SOC was mainly realized through the influence on soil properties. 
Among the agricultural management indicators, agricultural machinery 
power and crop residue input positively contributed to SOC distribution 
with direct effects of 0.24 and 0.18, respectively. Whereas the effect of N 
fertilization remained mixed in the 1980s (− 0.06), which means it was 
difficult to determine whether the effect was positive or negative. 

The PLS-PM explained 29% of the variance in SOC of the 2010s 
dataset (R2 = 0.29). In contrast to the 1980s, soil properties (mainly soil 
pH) caused significantly lower effect on SOC in the 2010s, with a total 

effect of 0.25, compared to 0.62 in the 1980s. An increased direct effect 
of climate on SOC (0.34) offset the reduced indirect climatic effect from 
weaker soil physiochemical effects. Consequently, the strongest driver 
of SOC in the 2010 s was climate. The total effects of agricultural ma-
chinery and crop residue input were similar in the 2010s. However, the 
indirect effect of machinery through influencing other soil properties 
increased and the direct effect decreased from 0.24 to 0.15. N fertil-
ization exerted a significantly positive effect on SOC (0.19) in the 2010s 
compared to the insignificant effect in the 1980s. 

Both PLS-PMs revealed that agricultural management practices had 
positive effects on SOC. In other words, croplands with more intense 
management tended to have higher SOC. Moreover, the soil physi-
ochemical effects on SOC decreased as the part of variance in SOC that 
all indicators explained decreased, which suggested more independent 
SOC change after long-term cultivation. 

3.5. Direct and indirect effects of indicators on SOC change from the 
1980s to the 2010s 

The fitted PLS-PM on SOC change (calculated as the difference in 
SOC content between the 2010s and the 1980s) based on the paired soil 
sample data measured the effects of different indicators on the temporal 

Fig. 5. PLS-PMs of the (a) 1980s and (c) 2010 s. Rounded blocks represent latent variables and rectangular blocks are their corresponding manifest variables. Blue/ 
red arrows between latent variables indicate positive/negative path coefficients, among which solid lines are significant with P(>|t|) ≤ 0.05 and bolded path co-
efficients are significant with P(>|t|) ≤ 0.01. Dashed gray lines are insignificant with mixed effects (path coefficients < 0.10 in absolute value). Gray arrows between 
latent variables and manifest variables indicate loadings. Loadings with dashed lines are insignificant. “N” means the loading is converted to positive by using the 
opposite number of the indicator. (b) and (d) show direct/indirect and total effects of latent variables on SOC. MGST: mean annual average ground surface tem-
perature; MAP: mean annual precipitation. 
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change of SOC (Fig. 6). The initial agricultural level in the 1980s directly 
influenced SOC change through an insignificantly positive path (0.20). 
The most important manner through which it influenced SOC change 
was through the level of agricultural intensification. These two path-
ways led to an insignificant total effect. SOC change benefited more from 
agricultural intensification than the initial agricultural level, with a 
direct effect of 0.38. In general, most sampling points underwent intense 
enhancement in terms of agricultural management. The strong negative 
effect of initial agricultural level on the changes in agricultural man-
agement indicators (− 0.63) suggest that croplands deficient in agricul-
tural management in the 1980s attained more development, and this 
effect led to higher SOC accumulation up to the 2010s. For each type of 
agricultural activity, PLS-PM revealed that changes in agricultural ma-
chinery power and crop residue input were the main factors driving SOC 
change, as N fertilizer use rate did not significantly contribute to this 
pathway. Furthermore, sampling points with more increase in residue 
return rate tended to generate less SOC change as crop residue input was 
taken as the opposite number in the PLS-PM. 

Edaphic conditions were the strongest driver of SOC change, with a 
path coefficient of 0.74. The “Soil” latent variable included clay content 
change, TN change, and pH in the 1980s as the initial acidity level. The 
results showed that croplands with high SOC change normally presented 
more clay and TN change, and this tended to occur in soils with rela-
tively high pH. Although TN change did not contribute the most to 
“Soil”, the correlation between TN change and SOC change was 
important (Spearman’s correlation coefficient of 0.79). The baseline 
SOC was negatively correlated with SOC change, which indicated that 
croplands with a low SOC content in the 1980s accumulated more SOC 
over time. The climatic effects on SOC change were divergent. Although 
climate positively influenced both the baseline SOC and SOC change, it 
exerted a negative effect on soil physiochemistry, which indirectly 
neutralized its direct effect on SOC change. 

4. Discussion 

4.1. Drivers of SOC distribution and changes in their effects from the 
1980s to the 2010s 

Although the relationships between soil C and the environment is 
crucial for C cycling research, few studies have measured the temporal 
changes in these relationships. Our study quantifies the driving mech-
anisms of SOC spatial distribution over two time periods in a well- 

developed region with a long cultivation history and examined the 
changes in the relationships between SOC distribution and its main 
drivers. The results showed that agricultural activities exerted important 
positive effects on SOC distribution, and these effects increased over 
30 y, especially that of N fertilizer input. Soil physiochemistry was 
crucial in controlling the SOC distribution in the study area, and climate 
exerted constant positive effects on SOC through different pathways. 

Few studies have incorporated agricultural management practices 
into quantitative analysis of SOC distribution. Our results suggest that 
agricultural management practices were indispensable driving factors of 
SOC distribution in a positive manner (Fig. 5). Machinery was the 
strongest driving factor in the 1980s, and N fertilization became sig-
nificant in the 2010s. The addition of these agricultural management 
indicators to PLS-PMs improved the R2 of SOC by 20.4% and 20.7% in 
the 1980s and 2010s, respectively (compared to that shown in Fig. S2). 
The effects of agricultural management on SOC are related to crop types. 
Fig. 4 shows the significant differences in the SOC content under 
different crop rotations. Every type of main crop rotation is character-
ized by a specific spatial distribution and agricultural management. 
Single-season rice was mostly planted in paddy fields on the terraces of 
Zhejiang Province (Fig. S3), which are located at high altitudes and 
benefited from warm humid climates, while lacking in the necessary 
management in the 1980s. Rice-rape rotation was common in this re-
gion, often with green manure or wheat after rice harvest. Croplands 
under rice-wheat rotation were usually a transition from drylands to 
paddy fields to improve productivity. Wheat-dominated drylands were 
mostly distributed in the northern part of the study area, with sandy soils 
of low fertility, which were less intensively managed in the 1980s. The 
three agricultural management practices used in this study differed 
among crop rotations (Fig. S1). The advocacy of straw/stover return 
started after the 1980s (Huang and Sun, 2006). In the early 1980s, the 
crop residue input in rice-dominated croplands was higher than those in 
wheat-dominated croplands and generated more C input from crop roots 
owing to their higher grain yield, which was associated with higher SOC. 
The application of agricultural machinery contributed to SOC distribu-
tion as well as soil texture and acidity, as evidenced by higher indirect 
effect and consistent positive direct effect on SOC. The N fertilizer use 
rate was low in the 1980s, especially in the terraces of single-season rice, 
which resulted in an insignificant effect on SOC in the PLS-PM. 

In PLS-PMs of the 1980s and the 2010s, soil pH and clay content were 
used to reflect soil acidity and texture, respectively. The results indi-
cated that SOC tended to be high in croplands with low pH and high clay 

Fig. 6. (a) PLS-PMs of paired soil sample data to model SOC dynamics from the 1980–2010s. Rounded blocks represent latent variables and rectangular blocks are 
their corresponding manifest variables. Blue/red arrows between latent variables indicate positive/negative path coefficients, among which solid lines are significant 
with P(>|t|) ≤ 0.05 and bolded path coefficients are significant with P(>|t|) ≤ 0.01. Dashed gray lines are insignificant with mixed effects (path coefficients < 0.10 in 
absolute value). Gray arrows between latent variables and manifest variables indicate loadings. Loadings with dashed lines are insignificant. “N” means the loading is 
converted to positive by using the opposite number of the indicator. (b) Direct/indirect and total effects of latent variables on SOC change. MGST: mean annual 
average ground surface temperature; MAP: mean annual precipitation. 
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content, which is consistent with previous studies (Zhang et al., 2021). 
This effect might be attributed to the slower decomposition process of 
SOM after soil acidification by N input (Guo et al., 2010). The effect of 
edaphic conditions on SOC distribution decreased significantly 
compared to that of other drivers, indicating a more complex and 
interfered SOC regulation mechanism in the topsoil of croplands. A 
possible cause was the various human interference in croplands, such as 
C or N input from fertilizers and crop residue, tillage strategies, or tar-
geted farmland transformations, which disrupted the natural balance of 
soil physiochemical processes. 

Climate is often considered a primary factor controlling SOC (Beil-
louin et al., 2021; Bradford et al., 2016; Tang et al., 2018). However, 
many studies have demonstrated only the direct effects of temperature 
and precipitation on SOC. Our results highlighted the importance of 
indirect climatic effects on SOC through other soil properties. In this 
study, temperature and precipitation presented a positive total effect on 
SOC in the PLS-PMs of the 1980s and the 2010 s, which is consistent 
with the results of other previous studies (Luo et al., 2017; Osland et al., 
2018). In the 2010 s, the direct climatic effect on SOC increased as the 
indirect effect through soil properties decreased. This maintained a 
constant influence of climate on SOC, which indicated the indispensable 
effect of climate on SOC distribution. The decrease in the indirect cli-
matic effects on SOC was attributed to the pathways through soil 
properties and crop residue input. The lower edaphic effects on SOC 
from the 1980s to the 2010s was a cause of the decrease in indirect 
climatic effects. Moreover, climate presented a significantly positive 
effect on crop residue input in the 1980s, which further enhanced SOC 
(Fig. 5a). However, this positive effect decreased in the 2010 s. This 
might result from the general improvement in grain yield in the study 
area from the 1980s to the 2010s (Fig. 7) and the widely applied 
straw/stover return policies, which led to the more similar crop residue 
input among all sampling points (Table S2). 

4.2. Drivers of SOC change based on the paired soil sample data 

From a spatial perspective, it is unclear how natural and anthropo-
genic factors jointly influence SOC changes in croplands. As previously 
reported, the cropland SOC stocks in East China increased from 22.10 to 
30.42 Mg C ha-1 from 1980 to 2011 (Zhao et al., 2018), which indicates a 
general SOC accumulation in our study area. The present study quan-
tified the climatic, agricultural management, and soil physiochemical 
effects on SOC change in this region and separated direct and indirect 
effects. 

Long-term agricultural management implementations and intensifi-
cation have potential effects on soil C dynamics, as reported in many 
studies (Amelung et al., 2020; Beillouin et al., 2021). Agricultural 

management practices and agronomic policies in Yangtze River Delta 
region underwent major changes from the 1980s to the 2010 s. For 
instance, burning used was a prevailing approach for the disposal of crop 
residue until the government enhanced monitoring and economic pen-
alties to prevent air pollution. Related crop straw/stover return policies 
and subsidies were implemented after the late 1980s, which led to the 
increase in C input from crop biomass (Huang and Sun, 2006; Qu et al., 
2012). Crop residue input increased substantially with the rapid in-
crease in grain yield (Fig. 7). However, our results indicated that SOC 
tended to change in croplands with smaller increase in crop residue 
input (Fig. 6). This suggests that SOC change could be induced by the 
initial grain yield of each rotation type to a higher extent than by the 
increase in straw/stover input rate, as the yield of every type of crops 
increased sufficiently. 

Agricultural machinery use and its expansion were the strongest 
agricultural factors driving SOC change. Accompanied by advances in 
agricultural technologies and socio-economics, labor-intensive 
manuring and plowing practices have decreased owing to the increasing 
labor costs and shortages (Gao et al., 2006). Since the 1990s, the con-
ventional tillage strategies have shifted to rely on farm machinery (Han 
et al., 2018). In wheat-maize rotated drylands, rapid agricultural 
mechanization improved efficiency of seeding, harvesting, and the 
application of fertilizers and pesticides, which boosted grain yield. In 
paddy fields, the application of agricultural machinery helped in 
plowing, irrigation, and planting to modify the soil structure and 
texture, which helped SOC accumulation (Dikgwatlhe et al., 2014). 

Since the 1980s, chemical fertilizer use has rapidly increased in 
China to improve soil fertility and grain yield. Inorganic N fertilizer 
prevailed first. Compound and organic fertilizers have been successively 
advocated to balance soil nutrient cycling (Fig. 7). The overall massive 
improvement in N fertilization was an important factor driving SOC 
change (Fig. 6), especially in wheat-maize rotated drylands which were 
rapidly mechanized. 

Except for the intensification of agriculture from the 1980s to the 
2010 s, the initial agricultural level also presented positive direct effects 
on SOC change, which indicated that croplands with earlier imple-
mentation of agricultural management practices attained a higher SOC 
increase in the 1980s. However, croplands that were deficient in agri-
cultural management in the 1980s attained more development in agri-
cultural modernization. The correlations between the initial levels of all 
three agricultural management indicators and their changes were 
negative (Figs. 6 and 8), and this effect led to a higher SOC accumulation 
up to the 2010 s 

Soil physiochemistry was the strongest driver of SOC change in this 
study (Fig. 6). This importance of soil physiochemistry in SOC dynamics 
has been emphasized in previous studies (Doetterl et al., 2015; Luo et al., 

Fig. 7. The changes in different types of fertilizer application, total power of agricultural machinery, and grain yield in the Yangtze River Delta region from 1980 to 
2010. The data were obtained from the National Bureau of Statistics of China (http://www.stats.gov.cn/sj/). 
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2019). Among the indicators of edaphic conditions shown in Fig. 6a, TN 
change was the most closely related to SOC change. This mainly 
occurred because of the close connection between soil N and C (Cleve-
land and Liptzin, 2007; Tian et al., 2010; Deng et al., 2020). In inten-
sively cultivated agroecosystems with sufficient N supply, the C:N ratio 
remains stable (Tian et al., 2010). Constant application of N fertilizer 
since the 1980s has enhanced the TN and crop growth in the study area, 
and consequently, SOC. In addition, N fertilization can lead to a 
considerable decrease in soil pH (Lu et al., 2022; Tian and Niu, 2015), 
which induced soil acidification in the study area (Sun et al., 2023; 
Zhang et al., 2020). We observed that croplands with higher topsoil pH 
in the study area experienced a greater decrease in pH, and this trend 
was consistent with the TN change, as they influenced SOC change 
together. Furthermore, the negative path coefficient from baseline SOC 
to SOC change (Fig. 6) indicated that croplands with lower SOC in the 
1980s generally attained a greater increase in SOC after 30 y of culti-
vation, which has been demonstrated in previous studies as the baseline 
effect (Bellamy et al., 2005; Goidts et al., 2009; Luo et al., 2020). 

Climate has divergent effects on SOC change. It directly influenced 
SOC change, which indicated that SOC accumulation tended to occur in 
croplands under warm and humid climates. However, the baseline SOC 
also benefited from more suitable climatic conditions. indicators of 
edaphic conditions in the PLS-PM were negatively affected by climate. 
Both pathways offset the direct climatic effect on SOC change, so that 
the total effect of climate was insignificant. This implied that despite the 
low overall climatic effect on SOC change, climate could still exert a 
noticeable influence on SOC change. 

4.3. Implications 

Agricultural management indicators proved significant in driving 
SOC dynamics in croplands. The results indicate that the driving 
mechanisms of SOC distribution can change over time, which suggests 
that the relationship between soil C and environmental covariates can be 
a function of time. This implies that human activities have drastically 
changed cropland C cycling processes at an interdecadal scale. There-
fore, process-based modeling and digital mapping of soil C should 
incorporate indicators that reflect agricultural management, cropping 
systems, and more information. Future studies should avoid using fixed 
model parameterizations to model SOC distribution at different time by 
only replacing different datasets of environmental covariates. 

Among the agricultural management practices, the application of 
crop residue input and agricultural machinery can lead to significant 
SOC accumulation. The effects of N fertilization in this study were 
relatively weak, which could be attributed to the surplus of N input in 
croplands of China (Schulte-Uebbing et al., 2022). Therefore, more 
rational fertilization strategies should be applied in the future. The use 
of organic fertilizers and implementation of conservation practices 
should be encouraged to prevent cropland degradation and improve 

sustainable production (Bohoussou et al., 2022; Cai et al., 2023). 
Cropland restoration and transformation were other anthropogenic 
factors beneficial to SOC accumulation in the study area. In Jiangsu 
Province, the extensive conversion from drylands to rice-wheat rotated 
paddy fields with improved irrigation efficiency has led to a major in-
crease in grain yield since the 1980s, accompanied by improved soil 
structure (Huang and Pan, 2017). In this study, 18% of paired soil 
sampling points were converted to paddy fields from drylands over the 
30 y, and their average SOC increased 6.07 g kg-1, which was signifi-
cantly higher than the average of 2.92 g kg-1 in all points. Moreover, 
salt-tolerant cash crops were planted in reclaimed saline lands in coastal 
areas, which also enhanced SOC accumulation in these barren soils 
(Wang et al., 2016). 

4.4. Limitations 

The present study analyzed the driving mechanisms of the spatio-
temporal dynamics of topsoil organic carbon content in croplands of the 
Yangtze River Delta region from a statistical perspective. PLS-PM is a 
method casual in data distribution to model multivariate relationships 
(Esposito Vinzi et al., 2010), which is suitable for building 
semi-empirical models using our datasets. When interpreting the results, 
the magnitude of the effects is relatively less precise than whether the 
effects are positive or negative because of the existing statistical bias. 

This study presented some limitations that could have influenced the 
results. For instance, the agricultural management indicators were 
extracted from raster or county-level data. Although these are the most 
detailed available data, they may reduce the reliability in depicting the 
characteristics of the sampling points. Remote sensing-based datasets 
can be options to provide more information on the features of agricul-
tural activities to improve model performance in the future (Weiss et al., 
2020). More detailed repeated sampling and other high-quality datasets 
should be combined to better quantify the effects of driving factors on 
SOC dynamics. Moreover, the indicators may have lagged or cumulative 
effects on SOC at the current temporal scale. Therefore, time series data 
of SOC and environmental indicators are required for further research. 

5. Conclusions 

Our study quantified the direct and indirect effects of climate, agri-
cultural management, and soil physiochemical properties on topsoil 
organic carbon content in croplands of the Yangtze River Delta region in 
the 1980s and 2010s, and analyzed the joint effects of these factors on 
SOC change over 30 y. The results of the drivers of SOC distribution 
showed that SOC tended to be higher in soils with a relatively low pH 
and high clay content in warm humid climates. Furthermore, higher 
SOC was associated with the application of N fertilizer, crop residue 
input, and agricultural machinery in the 1980s and 2010s. From the 
1980s to the 2010s, the effect of N fertilization on SOC distribution 

Fig. 8. The relationships between the initial levels of agricultural management indicators and their changes from the 1980s to the 2010 s. The size of the bubbles 
represents the SOC change of the paired sampling points. Gray lines are the linear regression line for all sampling points. 
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increased, whereas the edaphic effects decreased. Regarding the drivers 
of SOC change over the three decades, initial agricultural level and 
agricultural intensification were indispensable drivers of SOC accumu-
lation. Croplands with lower intensity of management practices in the 
1980s generally attained more development, which led to a considerable 
SOC increase. Edaphic effects were the strongest driver of SOC change, 
including the positive effects of TN and clay content change, and the 
negative effects of topsoil acidity and baseline SOC. Our results indicate 
that agricultural activities in croplands can induce drastic changes in 
topsoil organic carbon. Future studies should incorporate the temporally 
changing agriculture-related driving mechanisms of SOC dynamics into 
process-based models and digital mappings at different spatiotemporal 
scales. 
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