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A B S T R A C T   

Generating accurate spatial information on soil organic matter (SOM) is increasingly important in the context of 
global environmental change. Both prediction models and environmental covariates influence the mapping re
sults and accuracy, making them important factors in SOM mapping. The Bayesian spatial model INLA-SPDE is 
an emerging model, that has shown potential in digital soil mapping (DSM), but its application is still limited. 
Soil moisture, which affects soil water status and the decomposition of SOM, can be a potential predictor for 
mapping SOM. However, the difficulty of obtaining soil moisture measurements over a large area using ground- 
based methods hinders its application. Recently, high spatial resolution remote sensing (RS) has provided a 
possible way to generate soil moisture indices over a large area. However, the effectiveness of RS-based soil 
moisture indices on SOM mapping is unknown. Fourier transforms decomposed (FTD) variables based on 
vegetation indices have been proven effective in detecting time-series patterns of crop growth, thereby improving 
the mapping accuracy of farmland. Yet, the effectiveness of FTD variables has not been verified in other 
vegetation-covered areas. This paper examines the use of INLA-SPDE with three RS-based soil moisture indices 
(NSDSIs) and six FTD variables for SOM mapping compared to Random Forest (RF), in a study area with diverse 
vegetation cover in Anhui Province, China. The finding indicates that with the optimal combination of envi
ronmental covariates, INLA-SPDE yields a higher prediction accuracy than RF, with an increase of 18% in R2. 
Either the RS-based soil moisture indices covariates or the FTD variables are effective in mapping SOM. When 
compared to using only natural environmental covariates, the best combination including RS-based soil moisture 
indices and FTD variables improved the mapping accuracy by 25% in terms of R2, 21% of LCCC, and 11% of 
RMSE. Furthermore, quantitative prediction uncertainty maps are derived based on the INLA-SPDE. This study 
demonstrates the effectiveness of INLA-SPDE model with the RS-based soil moisture indices and Fourier trans
forms decomposed variables for SOM mapping.   

1. Introduction 

Soil organic matter (SOM) plays a crucial role in the global carbon 
cycle, soil health, and food security (Johnston et al., 2009; McBratney 
et al., 2014; Wang et al., 2022). The significant amount of carbon pre
sent in soils has the potential to impact global climate change, and can 
serve as a potential sink for carbon sequestration (Lal, 2020; Zhou et al., 
2019). Obtaining accurate information on the spatial distribution of 
SOM is important for understanding soil quality, guiding sustainable 

management practices, and providing guidance for climate change 
mitigation efforts (Lal, 2020; Moeskops et al., 2012). 

In recent decades, with the development of geographic information 
systems, environmental data acquisition technology, and machine 
learning models, digital soil mapping (DSM) has become an effective 
method for soil mapping (Arrouays et al., 2021; Chen et al., 2022). DSM 
involves establishing relationships between soil and its environmental 
covariates based on soil sample points, and using these relationships to 
predict the spatial distribution of soil properties (McBratney et al., 

Abbreviations: INLA-SPDE, Integrated Nested Laplace Approximation with the Stochastic Partial Differential Equation; NSDSI, Normalized Shortwave-infrared 
Difference SM Indices; FTD, Fourier Transforms Decomposed. 
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2003). The accuracy of DSM largely depends on the approaches/models 
to establish soil-environment relationships and the environmental 
covariates used (McBratney et al., 2003). 

Numerous models have been developed to map soil properties, 
including linear regression (e.g. Wu et al., 2009), geographically 
weighted regression (e.g. Odhiambo et al., 2020), kriging approaches (e. 
g. Kerry et al., 2012; Zare et al., 2021), machine learning (e.g. Jahan
dideh Mahjenabadi et al., 2022; Purushothaman et al., 2022) and deep 
learning (e.g. Wadoux, 2019; Zhang et al., 2022), etc. Meanwhile, there 
has been increasing attention paid to quantifying the uncertainty of DSM 
as it provides an important reference for the reliability of soil maps 
(Huang et al., 2017; Poggio et al., 2016). Besides, for calculating un
certainty from a large number of realizations or through sample boot
strapping, Bayesian approaches have been developed to explicitly 
describe uncertainty explicitly by considering the model parameters as 
probabilistic variables with posterior probability density functions 
(pdfs) (Huang et al., 2017; Minasny and McBratney, 2016; Poggio et al., 
2016). Markov Chain Monte Carlo (MCMC) simulations are a commonly 
used method for obtaining the posterior distribution of model parame
ters in Bayesian inference, as demonstrated in studies by Minasny et al. 
(2011) and Sun et al. (2013). Furthermore, in order to address the 
challenge of the large computational volume of MCMC, the Integrated 
Nested Laplace Approximation with the Stochastic Partial Differential 
Equation approach (INLA-SPDE) has been developed. This involved 
computing numerical approximations to the marginal density for both 
hyper-parameters and latent variables (Huang et al., 2017; Rue et al., 
2009; Ryan et al., 2015). This approach offers a more efficient alterna
tive to MCMC for Bayesian inference, particularly in cases where the 
model involves complex and high-dimensional data, and has been suc
cessfully applied in many research fields, such as mapping the spatial 
distribution of geochemical patterns (Wang and Zuo, 2021), ambient air 
pollution (Wright et al., 2021), spatio-temporal characteristics of disease 
spreading (Moraga et al., 2021), etc. 

The INLA-SPDE model was first applied in DSM by Poggio et al. 
(2016), and their study verified the feasibility of using INLA-SPDE for 
mapping SOM in the Grampian region of Scotland, with the advantages 
of good assessment of uncertainty. Huang et al. (2017) demonstrated 
that INLA-SPDE is as robust as the residual maximum likelihood for 
mapping SOC, Ti/Zr ratio and pH in the Nowley farm of Australia with 
sparse datasets. Beguin et al. (2017) suggested that INLA-SPDE has 
generated higher prediction accuracy to predict key forest soil proper
ties in the case of limited samples when compared with Ordinary Kriging 
(OK), Random Forest (RF) and Boosted Regression Tree (BRT). Sun et al. 
(2021) further adopted INLA-SPDE for modeling spatial–temporal 
change of SOM on a regional scale. These previous studies demonstrate 
the potential of INLA-SPDE in DSM, but its application is still limited. 

The spatial distribution of SOM is influenced by various environ
mental factors such as climate, topography, soil properties, and vege
tation, etc (Minasny et al., 2013). Remote sensing (RS) has become a 
valuable tool for predicting SOM distribution due to its high spatial 
resolution, long-term data availability, and accessibility (He et al., 2021; 
Omrani et al., 2021). Vegetation-related indices, such as the Normalized 
Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index 
(SAVI), and Enhanced Vegetation Index (EVI), are commonly used 
covariates extracted from RS data. Long-term time series of vegetation 
indices provide valuable information on the vegetation growth status, 
which can be used to map SOM distribution. These techniques have been 
increasingly applied in recent years. (Maynard and Levi, 2017). The 
behind theory is that different growth characteristics within a long 
period relating to behaviors of vegetation influence soil carbon con
centrations’ absorption and decomposition (Richardson et al., 2010). 
Fourier transforms decomposed (FTD) covariate, generated by decom
posing the time series NDVI into periodic signals in the frequency 
domain, is one of the promising predictors for mapping SOM developed 
based on time-series RS images (Yang et al., 2019). Yang et al. (2019) 
demonstrated the effectiveness of FTD covariates in reflecting 

agricultural activities in a typical agricultural area. This may be due the 
fact that the periodic patterns indicated by FTD covariates are related to 
different crop species/crop rotations, or different growth stages within 
one crop species. However, FTD covariates have only been applied in a 
farmland areas.Therefore it is necessary to explore the effectiveness of 
these covariates on DSM in other vegetation-covered areas. 

Besides vegetation, soil moisture content affects soil water status and 
the decomposition of SOM (Yoshida et al., 2018), and also influences 
vegetation evapotranspiration and vegetation growth (Zhang et al., 
2019a; Zhang and Zhou, 2016), thus significantly relating to SOM 
content (Yoshida et al., 2018). As a result, soil moisture can be a po
tential covariate for predicting the spatial distribution of SOM. How
ever, obtaining large-scale soil moisture estimations based on ground- 
based observations is costly (Rao et al., 2022; Tian et al., 2021), 
which may be a reason why the use of soil moisture in DSM is rare. 
Recently, microwave and thermal remote sensing have been adopted to 
reflect soil moisture over large areas. However, the spatial resolution of 
microwave remote sensing is usually coarse (Wigneron et al., 2017; Yue 
et al., 2019), and thermal remote sensing is strongly influenced by at
mospheric factors (near-surface air temperature, etc.) (Sandholt et al., 
2002). Optical remote sensing has been utilized to assist in the pro
duction of soil moisture information through water absorption bands 
(Tian et al., 2021; Yue et al., 2019). Several soil moisture indices are 
developed, such as the Water Index SOIL (WISOIL), the Normalized 
Index of Nswir domain for Smc estimatiOn from Linear correlation 
(NINSOIL), the Normalized Index of Nswir domain for Smc estimatiOn 
from Non-linear correlation (NINSON) (Fabre et al., 2015). However, 
the indices currently available are primarily generated from hyper
spectral (narrow-band) remote sensing, which has limited spatial reso
lutions (Yue et al., 2019; Zhang et al., 2019b). To address this issue, Yue 
et al. (2019) proposed the use of normalized shortwave-infrared dif
ference bare soil moisture indices (NSDSI) based on Landsat data with a 
spatial resolution of 30 m. This approach provides a better spatial res
olution and has been shown to achieve comparable accuracy to narrow- 
band soil moisture indices. The development of these indices has 
expanded the potential for using RS-based soil moisture indices to map 
SOM. 

In this study, we employed INLA-SPDE to predict the spatial distri
bution of SOM with soil moisture indices (NSDSI) and Fourier trans
forms decomposed (FTD) covariates in a study area located in 
Xuancheng, Anhui province, China. The objectives of this paper are, (1) 
to explore the prediction accuracy of INLA-SPDE approach to SOM by 
compared with Random Forest (RF); (2) to evaluate the effectiveness of 
NSDSI and FTD as environmental covariates to predict SOM spatial 
distribution (3) to analyze the uncertainty spatial distribution of SOM in 
this study area by INLA-SPDE and RF models. 

2. Material and methods 

2.1. Study area 

The study area is Xuanzhou city and Langxi County, located in Anhui 
province of China (30◦33′59″-31◦18′14″ N, 118◦27′38″-119◦22′55″ W, as 
shown in Fig. 1). This area is situated in the transition zone between the 
Southeast Hills and Yangtze Valley Plain, covering approximately 2552 
km2 (Yang et al., 2019). The subtropical monsoon climate of this region 
is characterized by warm and humid summers, and mild and dry win
ters, with an average annual temperature ranging from 12 to 18 ◦C and 
an annual precipitation of 1200 to 1800 mm, which is concentrated 
between April and October (Yang et al., 2021). The terrain in this area is 
generally flat plains in the northwest, and hilly in the south and north
east, with elevations ranging from 0 to 1058 m. The local parent ma
terials of the soil are diverse, including clay-silt-gravel, stone, shale, 
conglomerate, pyroclastic rocks, granite, granodiorite, limestone, and 
other weathered residuals (Yang et al., 2019). According to the Chinese 
Soil Taxonomy, the soil types in the region are mainly Ferric-Udic 
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Fig. 1. Digital elevation model (DEM) (a), land-use and sample distribution (b) of the study area.  

Fig. 2. The flow chart of using different covariates and models for SOM mapping.  
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Argosols in their natural state, and Stagnic Anthrosols formed by long- 
term artificial cultivation (Qin et al., 2021), corresponding to the 
Ferric Lixisols and Hydragric Anthrosols in the World Reference Base for 
Soil Resources (WRB), respectively. 

According to data from the Resource and Environment Science and 
Data Center (RESDC) (https://www.resdc.cn/), in 2010 (the sampling 
period), farmland covered approximately 62.7% of the vegetation- 
covered areas in Xuancheng, forestland and grassland accounted for 
27.2% and 10.1%, respectively. Various crop rotation types were 
observed in the area, including rice–wheat, double rice, rice-rape, single 
rice, and minor rice-tobacco (Yang et al., 2020). And the main wild 
forest tree types were Ginkgo biloba, Parrotia subaequalis, Emmenopterys 
henryi Oliv and Metasequoia glyptostroboides, etc. 

2.2. Soil sample data 

Between 2010 and 2011, a total of 212 sampling points were 
collected at a depth of 0–20 cm using various sampling strategies from 
previous studies (Fig. 1). A systematic sampling strategy with a 10 km by 
10 km grid arrangement was used to select thirty-nine sampling points 
(Zhang et al., 2022). A stratified random sampling strategy was 
employed to collect forty-one sampling points (Yang et al., 2013). 
Thirty-six sampling points were collected using the heuristic 
uncertainty-directed sampling method (Zhang et al., 2016). The 
remaining ninety-six sampling points were obtained through represen
tative grade sampling (Yang et al., 2013). A mixed sample was collected 
at each sample point, and multiple samples within 10 m of the sur
rounding area were mixed into one sample (Zhou et al., 2019). 

Among all samples, 142, 43, and 14 sampling points were located in 
farmland, forestland, and grassland, respectively. The remaining 13 
sampling points were collected from other land use areas. The density of 
soil samples in this area was one observation per 12.03 km2. SOM was 
measured using the dichromate oxidation method (external heat 
applied) (Sparks et al., 1996). As the SOM data were skewed distributed, 
we transformed the original data into normal distribution using loga
rithm transformation (log10(y + 1)) in modeling to satisfy the require
ment of INLA-SPDE. Hereafter we use NorSOM to represent the 
transformed SOM. After the modeling was completed, the predicted soil 
property values were back-transformed to their original scale (Sun et al., 
2021). 

2.3. The overall framework of method 

The method of our study is illustrated in the flow chart (Fig. 2). We 
used three types of environmental covariates, including the commonly- 
used natural covariates, RS-based soil moisture indices (NSDSI) cova
riates, and Fourier transform decomposition (FTD) covariates. Those 
covariates were combined into different combinations for evaluating 
their effectiveness. Then, different groups of environmental covariates 
were taken as input to build INLA-SPDE and RF models. Finally, the 
predicted soil organic matter (SOM) maps generated by INLA-SPDE and 
RF, using different combinations of environmental covariates, were 
compared using accuracy indices based on cross-validation. This com
parison aimed to assess the performance of the two methods in pre
dicting SOM. 

2.4. Environmental covariates 

2.4.1. Natural environmental covariates 
We collected six natural environmental covariates representing 

climate, topography, and soil parent materials, i.e, annual mean tem
perature (TEM), annual mean precipitation (PRE), elevation (DEM), 
slope, topographic wetness index (TWI), and soil parent lithology 
(ParentL). 

The annual mean temperature and annual precipitation in 2011 were 
downloaded from RESDC. This climate dataset with a 1 km original 

spatial resolution was generated based on interpolation of daily obser
vation data at about 2,400 meteorological stations through the software 
ANUSPLIN (Hutchinson, 1998). We resampled the 1 km data to 90 m 
spatial resolution with a cubic resampling approach in ArcGIS. 

The topographic covariates were generated from the Digital Eleva
tion Model (DEM), which was produced by the Shuttle Radar Topo
graphic Mission (SRTM) at a 90 m resolution (https://srtm.csi.cgiar.org 
/srtmdata). The elevation (DEM), slope, and TWI (Kopecký et al., 2021) 
were generated from DEM data using the terrain analysis toolbox in 
ArcGIS. 

The 1:500,000 Chinese geological maps were employed to generate 
the soil parent lithology layer. The soil parent lithology in this region 
contains eight types: pyroclastic rocks, shale, sandstone, conglomerate, 
granite and granodiorite, limestone, quaternary clay-silt-gravel, qua
ternary vermicule boulder, and grave clay (He et al., 2021). 

2.4.2. Soil moisture indices 
The basis for obtaining soil moisture information from RS images is 

that soil spectral reflectance is associated with soil moisture content 
(Taneja et al., 2021). When the crevices around the soil particle change 
from air pores to water, its refractive index decreases relatively (Two
mey et al., 1986), and the SWIR band reflectance is sensitive to the 
changes in soil moisture from dry to saturated (Tian and Philpot, 2015). 
Yue et al. (2019) developed three NSDSI indices based on different water 
absorption in shortwave-infrared bands, i.e. SWIR1 and SWIR2 of 
Landsat images (Table 1). These indices were proven to have compa
rable or higher accuracy than other soil moisture indices such as 
WISOIL, NSMI, NINSOL, and NINSON. Importantly, these indices have a 
stronger application ability because they can be generated from 
commonly used multispectral high spatial resolution RS data and are 
less affected by atmospheric water vapor absorption (Yue et al., 2019). 

We utilized the above three soil moisture indices, NSDSI1, NSDSI2, 
and NSDSI3 in our study. We initially gathered Landsat 5 images with 
minimal cloud interference on various dates throughout the sampling 
period (February 21st, May 18th, July 21st, August 19th, October 19th, 
and December 9th) with a 30 m resolution from the GS Cloud platform 
(https://www.gscloud.cn/). We employed two criteria to determine the 
final images for computing soil moisture indices. Firstly, we selected 
images with minimal vegetation cover, such as during the winter season, 
to enable spectral information from remote sensing to more accurately 
reflect soil information. Secondly, we chose images with strong corre
lations with predicted soil properties. 

2.4.3. Generation of the Fourier transform decomposition covariates 
The Fourier transform has been proven effective in detecting peri

odic patterns in time-series vegetation-related data (Chen et al., 2018; 
Mingwei et al., 2008). Yang et al., (2019) conducted Fourier transform 
on time-series NDVI profiles and generated six new variables, i.e. the 
Amplitude (Amp1, Amp2, Amp3) and Phase (Pha1, Pha2, and Pha3) of 
three Fourier harmonics. More detailed information on FTD covariates 
was referred to Yang et al. (2019). These variables were solely used for 
soil mapping in farmland in their study. We adopted these six variables 
for predicting SOM over the whole study area. 

Table 1 
The descriptions of Normalized Shortwave-infrared (SWIR) Difference Bare Soil 
moisture Indices (NSDSI, 1 ~ 3).  

Indices Formula Reference 

NSDSI1 BSWIR1 − BSWIR2

BSWIR1 

(Yue et al., 2019) 

NSDSI2 BSWIR1 − BSWIR2

BSWIR2 
NSDSI3 BSWIR1 − BSWIR2

BSWIR1 + BSWIR2  

Notes: BSWIR1 and BSWIR2 represent the SWIR1 (1.55 ~ 1.75 μm) and SWIR2 
(2.08 ~ 2.35 μm) wave bands in Landsat 5 satellite, respectively. 
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2.4.4. Development of different covariates combinations 
To explore the effectiveness of NSDSI and FTD covariates in pre

dicting SOM with different models, four covariates combinations, i.e., 
“N”, “N + NSDSI”, “N + FTD”, and “N + NSDSI + FTD” were established 
based on the three pools of environmental variables. The first combi
nation was only natural environmental covariates. The second and third 
combinations were composed of the natural environmental covariates 
with the addition of the NSDSI covariates and FTD covariates, respec
tively. And the fourth combination consisted of all the covariates. 

2.5. INLA-SPDE model 

2.5.1. The basis of INLA-SPDE 
Unlike frequentist theory, the Bayesian approach considers the 

model parameters as probabilistic variables with joint posterior proba
bility density functions (pdfs). The estimated posterior marginal distri
bution of the model parameters is obtained using Bayes’ theorem 
(Huang et al., 2017; Li et al., 2018). In INLA-SPDE, the posterior prob
ability distribution of each parameter is inferred by incorporating 
external information, such as measured values of soil properties and 
environmental covariates, based on the Laplace approximation instead 
of simulations (i.e. MCMC approach) (Martins et al., 2013). Considering 
soil sample data as variables that change continuously in location s1, s2,

⋯,sn, the target soil property can be regarded as the spatial random field 
model of X(s1),X(s2),⋯,X(sn). If this spatial random field satisfies the 
normal distribution and has a defined covariance function, it can be 
represented as a Gaussian field (GF) (Wu, 2021). The Matérn covariance 
function is a commonly used function to define the spatial random field 
of GF to represent the spatial autocorrelation (Huang et al., 2017; Li 
et al., 2018; Wu, 2021): 

Cov
(
X(si),X

(
sj
) )

= σ2
eδij +

σ2
x

2v− 1Γ(v)
(k‖si − sj‖)

v
(k‖si − sj‖) (1)  

where ‖si − sj‖ represents the Euclidean distance between two point si 

and sj in the two dimension space; σ2
x is the spatial variance of the 

Matérn variogram, correlating with the space effect; k is the scale 
parameter; v is the smoothness parameter; kv is the modified Bessel 
function for the second type; Γ(v) is Gamma function (Huang et al., 
2017; Minasny and McBratney, 2005). The Matérn function also has the 
noise variance σ2

e , which is uncorrelated with space effect (i.e. nugget 
effect), δij is the Kronecker function: if i = j, δij = 0, otherwise δij = 1. 

If the model is a full spatial covariance function, it causes high 
computational costs, so the “big n problem” is involved (Banerjee et al., 
2008; Poggio et al., 2016). Lindgren et al. (2011) suggested that a large 
class of GF (such as the spatial distribution of SOM) can be as solutions to 
stochastic partial differential equations (SPDE), so that a continuous 
spatial process of spatial random field can be represented by a discretely 
indexed spatial random process, and GF can be converted to the 
Gaussian- Markov random field (GMRF), which is the sparse matrix, thus 
significantly reducing the time–cost. The SPDE was based on the rep
resentation of the Matérn covariance function as a solution (Huang 
et al., 2017; Lindgren et al., 2011; Wu, 2021): 
(
k2 − Δ

)α
2X(s) = W(s), s ∈ R (2)  

where X(s) is the spatial random field of location s, W(s) is the white 
noise of s, s belongs to the two-dimensional spatial domain R; Δ is the 
Laplace operator ∂2

∂Si
2 + ∂2

∂Sj
2, k is a scale parameter, associated with the 

empirical range in geostatistics and jointly defined by the other pa
rameters of the INLA-SPDE model (max.edge, cutoff, and offset) (Wu, 
2021), α is a positive integer related to the smoothness parameter v (α =
v + d/2, d = 2, representing the two-dimensional spatial) (Lindgren and 
Rue, 2015a; Lindgren and Rue, 2015b; Poggio et al., 2016), α was set to 
2 (so that v = 1 and d = 2) as recommended by previous studies (Sun 

et al., 2021; Whittle, 1954). In practice, the SPDE is solved by the finite 
element method (FEM) that approximates the continuous GF as the 
discrete GMRF, that is, using the Delaunay triangulation network (i.e. 
MESH) to denote continuous two dimension space in INLA-SPDE model 
(Lindgren and Rue, 2015a; Wu, 2021). The INLA-SPDE model was 
implemented using the “INLA” package in R language (https://www.r- 
inla.org/). 

2.5.2. The procedure to implement INLA-SPDE model  

(1) Construct the mesh 

The INLA-SPDE model utilizes a Delaunay triangular network mesh 
to project the continuous space onto a discrete space, which is composed 
of small triangles that approximate the Matérn Gaussian field (Lindgren 
et al., 2011; Poggio et al., 2016). To construct the mesh set of the INLA- 
SPDE model in this study, several parameters, including max.edge, 
cutoff, and offset, needed to be set. In this study, we set the three pa
rameters as (0.03, 0.1), 0.02, and (− 0.5, 0.1), respectively (see Fig. 3). 
These values were determined through experiments to obtain the most 
regular small triangles possible (Huang et al., 2017), while balancing 
computational cost and modeling accuracy. Once the mesh was con
structed, the spatial correlation structure of the SPDE was defined using 
the Matérn function (Poggio et al., 2016).  

(2) Build the Bayesian hierarchical model for SOM prediction 

The hierarchical model implemented in INLA-SPDE was used to 
predict SOM (Huang et al., 2017; Wu, 2021). This model consists of 
three parts: the intercept, the spatial fixed effects consisting of cova
riates and their coefficients matrices, and the spatial random effect of 
spatial locations. These three components can be expressed as follows 
(Arshad et al., 2020; Huang et al., 2017; Wang and Zuo, 2021; Wu, 
2021): 

ηk = β0 +
∑B

b=1
βbxbk + ξ(si, sj) (3)  

Where ηk is an additive linear estimation representing the spatially 
predicted soil properties; the first term β0 is the intercept; xbk is the 
environmental covariate of k, βb is the coefficient of the ith environ
mental covariate, 

∑B
b=1βbxbk represents the linear fixed effects consist

ing of environmental covariates; ξ(si, sj) is used to represent spatial 
random effect and can be expressed as the Matérn covariance function 
solved by SPDE (in section 2.5.1) (Li et al., 2018; Wang and Zuo, 2021). 
To fit the hierarchical model, NorSOM was used, and the likelihood 
distribution family for the distribution of the NorSOM was defined as the 
“Gaussian” distribution.  

(3) Define the prior distribution of the model parameters and 
establish the data stack 

The prior distribution of model parameters can be specified as either 
informative or left as the default (non-informative) (Poggio et al., 2016). 
Due to the lacking prior knowledge in this study area, the default pa
rameters and hyperparameter in the “INLA” package were adopted (Li 
et al., 2018; Poggio et al., 2016; Wang and Zuo, 2021). To ensure the 
proper functioning of the INLA-SPDE model, a data stack consisting 
samples matrix, covariates matrix, and prediction matrix were estab
lished and joined to the model processing (Poggio et al., 2016).  

(4) Select environmental covariates based on DIC 

The inclusion of redundant covariate information not only adds 
unnecessary complexity to the model (Beguin et al., 2017) but also in
troduces unnecessary errors (Hastie, 2009). Therefore, selecting an 
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optimal set of environmental covariates is increasingly becoming an 
important step in developing a DSM model. The deviance information 
criterion (DIC), which is a commonly-used index for measuring model 
performance in Bayesian models (Spiegelhalter et al., 2001), is usually 
employed to select covariates for INLA-SPDE (Arshad et al., 2020; 
Huang et al., 2017; Li et al., 2018; Rue et al., 2009). Similar to Akaike’s 
Information Criterion (AIC), a smaller DIC indicates a better model fit 
(Poggio et al., 2016). The specific procedure for using DIC with INLA- 
SPDE is as follows. First, fit an original full INLA-SPDE model with all 
covariates and obtain the original DIC. Second, delete each of the 
covariates in turn and fit INLA-SPDE again to obtain a new DIC of INLA- 
SPDE. Third, delete a covariate if the reduced model excluding this co
variate has a lower DIC value than the original model or other reduced 
models; if the result is the opposite, reserve this covariate. Fourth, 
iterate this process through all covariates and compute DIC in turn. 
Finally, obtain the final set of covariates that deletes any of the 
remaining covariates generated models with a larger DIC value than 
other models in the same processing turn (Arshad et al., 2020; Huang 
et al., 2017; Li et al., 2018). 

2.5.3. Quantifying uncertainty in INLA-SPDE model 
The Bayesian approach provides the posterior marginal distribution 

to quantify the spatial uncertainty of predicted soil properties. This 
distribution directly represents the probability of the predicted value 
falling within a credibility interval (Huang et al., 2017; Poggio et al., 
2016). In our study, the mean of the predicted SOM in INLA-SPDE 
modeling output was used as the predicted SOM result (Fig. 8), and 
the uncertainty of the predicted SOM was reported using two posterior 
density predictive distribution intervals, namely the 2.5% and 97.5% 
percentiles, which were derived using the INLA-SPDE model. The 2.5% 
percentiles and 97.5% percentiles, correspond to the lower limit (LL) 
and upper limit (UL) of the prediction, respectively. Based on previous 
studies (Arshad et al., 2020; Li et al., 2018; Wu, 2021), to describe the 
spatial distribution of uncertainty, we used the 95% highest posterior 
density credibility interval (95% HPD CI) and the relative width of the 

posterior interquantile range (RWPIR) (Wu, 2021; Yuan et al., 2016), 
which were determined using the following formula ((4) and (5)). 

95%HPDCI = 97.5%percentiles − 2.5%percentiles (4)  

RWPIR =
97.5%percentiles − 2.5%percentiles

mean
(5)  

2.6. Random forest as a comparison model 

The Random Forest (RF) model was utilized as a reference model. RF 
is a robust machine-learning tool based on the ensemble of decision trees 
and is widely used in soil properties prediction (Taghizadeh-Mehrjardi 
et al., 2020; Tian et al., 2022; Yang et al., 2020; Zhang et al., 2021). RF 
model has several advantages, including higher tolerance of outliers and 
noise, and being less prone to overfitting (Breiman, 2001). Previous 
studies have demonstrated that the RF model often has a better pre
dictive performance than other models (Camera et al., 2017; Pahlavan- 
Rad and Akbarimoghaddam, 2018). 

In RF model, the number of randomly selected predictors for each 
tree building (mtry) and the number of trees to be learned in a forest 
(ntree) are important parameters. mtry was set according to one-third of 
the total number of model variables (Xia and Zhang, 2022), and ntree 
was set to 1000, based on several iterations experiments (Yang et al., 
2022). Recursive Feature Elimination (RFE) was utilized to select and 
filter the optimal combination of covariates for the RF model (Chen 
et al., 2021; Yang et al., 2022). To ensure fairness in model comparison, 
we selected the best covariates with the highest prediction accuracy for 
each covariates combinations using DIC-based selection for INLA-SPDE 
and RFE-based selection for RF, respectively. 

To assess the uncertainty of the RF model, we utilized the quantile 
regression forest (QRF) to estimate the prediction uncertainty (Mein
shausen, 2006). This approach calculates quantiles of the conditional 
probability distribution for each prediction location, which collectively 
define the distribution at that location (Takoutsing and Heuvelink, 
2022). We obtained the 2.5% and 97.5% percentiles from the QRF 

Fig. 3. The constructed mesh network for INLA-SPDE model. The red represents soil sample points, and the green represents the boundary of the study area. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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model, similar to INLA-SPDE, and computed the 95% highest posterior 
density (HPD) credible interval and random walk predictive interval 
regression (RWPIR) using the same method (see section 2.5.3). 

We employed the “randomForest” package in the R language to 
perform the RF models, the “caret” package for the RFE process, and the 
“ranger” package to execute the QRF models for quantifying 
uncertainty. 

2.7. Evaluation of the predicted soil maps 

Ten-fold cross-validation was used to evaluate the accuracy of the 
predicted SOM using two models with different combinations of cova
riates. All samples are randomly divided into ten subsets, and in each 
repetition, nine of them are taken as the training data set and the 
remaining one as the validation data. The average of these 10 results was 
used as the final evaluation results. Three commonly used accuracy 
verification indices, coefficient of determination (R2), Lin’s concordance 
correlation coefficient (LCCC) and root mean square error (RMSE, g 
kg− 1) were used to measure the performance of different covariates 
combinations in different models. The three indices were calculated as 
follows: 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (6)  

LCCC =
2rσyσŷ

σ2
y + σ2

ŷ + (y − ŷ)2 (7)  

RMSE =
1̅
̅̅
n

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(yi − ŷi)

2
√

(8)  

Where n is the sample size of validation points, yi and ŷi is observed and 
predicted SOM value at the corresponding validation points, r is the 
correlation coefficient between yi and ŷi , y and ŷ, σy and σŷ are the 
average and variance of y (observed SOM) and ŷ (predicted SOM). To 
explore the effect of covariate selection on model accuracy, we 
computed the model accuracy before covariates selection (all covariates 
in corresponding covariates group) and after covariates selection for 
each group of covariates. 

3. Results 

3.1. The descriptive statistics of SOM and its normally distributed 
transformation 

Fig. 4 displays the histograms of SOM and NorSOM, which is SOM 
after a normally distributed transformation. The original SOM exhibits 
moderate variation (CV = 47.1%), suggesting that the soil distribution in 
the study area is heterogeneous. Additionally, the original SOM is left- 
skewed. After a logarithmic conversion to achieve normal distribution, 
the NorSOM appears to be approximately normally distributed (Fig. 4b). 

3.2. The generated NSDSI 

We selected the image on February 21st as the final remote sensing 
image to calculate the soil moisture indices based on the principles 
outlined in Section 2.4.2. The generated NSDSI1, NSDSI2 and NSDSI3 
are shown in Fig. 5. The spatial distribution of the three indices are 
similar, especially NSDSI1 and NSDSI3. This is mainly because these 
three indices only have similar numerators. However, the indices show 
different variations over the study area. Generally, the southern hilly 
area and areas in the east part have larger soil moisture. The correlation 
coefficient between NSDSI1, NSDSI2 and NSDSI3 and NorSOM was 0.16, 
0.18 and 0.17 (Fig. 6, significant at 0.05 level), indicating they may 
provide useful information for SOM prediction. 

3.3. The correlation between SOM and environmental covariates 

The correlation coefficients between SOM and environmental cova
riates are presented in Fig. 6. Most of the environmental covariates, 
except TWI, Amp1, Pha1, and Pha2, showed a significant correlation 
with SOM at a 0.05 level. Although the correlation coefficients between 
natural environmental covariates and SOM are generally higher than 
those of NSDSI and FTD covariates, all three NSDSI covariates showed a 
significant positive correlation with SOM, which indicated that wetter 
soils have higher SOM in this area, and three of the six FTD covariates 
correlated with SOM. Furthermore, the correlation between NorSOM 
and NSDSI and FTD covariates was slightly higher than that between the 
original SOM and NSDSI and FTD covariates. 

3.4. The covariates selection for INLA-SPDE and RF 

Table 2 shows the selected covariates for INLA-SPDE and RF models 

Fig. 4. Distributions of original SOM content (4a) and the logarithmic transformed SOM content (NorSOM) (4b).  
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in SOM mapping respectively. It shows that the selected variables for 
INLA-SPDE and RF are similar. Table 2 displays the covariates selected 
for the INLA-SPDE and RF models in SOM mapping, respectively. The 
table indicates that the selected variables for both models are similar. 
Among the natural environment covariates associated with topography, 
INLA-SPDE chose the slope while RF chose the DEM, and in phase 
covariates of FTD, INLA-SPDE chose the first phase Pha1, RF chose the 
third phase Pha3. 

3.5. The prediction accuracies for the INLA-SPDE and RF models with 
different environmental covariates 

Fig. 7 displays the cross-validation outcomes for both models, using 

various combinations of environmental covariates. The results indicate 
that incorporating NSDSI or FTD covariates enhances mapping perfor
mance, regardless of whether INLA-SPDE or RF. Compared to the group 
of “N” which solely included natural environmental covariates, the “N +
NSDSI”, “N + FTD”, and “N + NSDSI + FTD” combinations improved the 
mapping accuracy by 11%, 17%, and 25% in terms of R2, 5%, 18%, 21% 
in terms of LCCC, 4%, 6%, and 11% in term of RMSE when using INLA- 
SPDE, respectively. The use of FTD covariates resulted in slightly greater 
improvement than the use of NSDSI. The environmental covariates 
combination “N + NSDSI + FTD” generally performed the best among 
all the combinations, indicating that using both NSDSI and FTD cova
riates showed a more promising predictive power. Additionally, INLA- 
SPDE outperformed RF in SOM prediction with either covariates 

Fig. 5. The spatial distribution of NSDSI1, NSDSI2, and NSDSI3 (a, b, c).  

Fig. 6. The correlations between SOM after normally distributed transformation (NorSOM) and natural, FTD and NSDSI environmental covariates. Note: the blank 
cells indicate that the correlation is not significant at a 0.05 level; Pearson’s correlation was used for original covariates or after normal distribution transformation. 
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combination. Compared to RF, INLA-SPDE had higher accuracies of 
11%, 19%, 19%, and 18% in terms of R2 using covariates combinations 
“N”, “N + NSDSI”, “N + FTD”, and “N + NSDSI + FTD”, respectively. In 
addition, the results demonstrate that the selection of covariates 
enhanced the prediction accuracy for both INLA-SPDE and RF models. 
Especially, after covariates selection, R2 of the INLA-SPDE model were 
improved by 8%, 13%, 10%, and 17% with covariates combinations “N”, 
“N + NSDSI”, “N + FTD”, and “N + NSDSI + FTD”, respectively. 

3.6. The predicted SOM maps 

Fig. 8 displays the spatial distribution of topsoil organic matter 
content predicted using INLA-SPDE and RF. The predicted SOM using 
INLA-SPDE and RF models with each covariates combination, exhibited 
a consistent spatial pattern, especially when using the same covariates. 
Generally, the southern mountainous regions with high elevation, high 
precipitation, low temperature, and gentle plains in the northwest areas 
had a relatively higher predicted SOM content, compared to other lo
cations. However, differences obviously existed in the spatial predicted 
SOM using different environmental combinations or models, and using 
more predictors produced more details in the predicted SOM maps. 
Maps of the difference between INLA-SPDE and RF showed that INLA- 
SPDE predicts higher SOM in some plain areas and some hilly areas in 
south, but lower SOM in other mountains in south. Furthermore, INLA- 
SPDE model produced a wider range of the predicted minimum and 
maximum values in comparison to RF. For instance, in combination “N 
+ NSDSI + FTD”, the predicted range of SOM for INLA-SPDE was from 
3.35 g kg− 1 to 77.06 g kg− 1, while the range for RF was from 9.33 g kg− 1 

to 37.94 g kg− 1. The predicted range of INLA-SPDE is more similar to the 
SOM of samples with a range from 4.37 g kg− 1 to 89.12 g kg− 1. 

3.7. The generated uncertainty maps 

Fig. 9 displays the spatial distributions of the 95% HPD CI and the 
RWPIR for the INLA-SPDE and RF models using the best combination of 
covariates (N + FTD + NSDSI). The results for other covariate combi
nations are similar. The maps illustrate that the two models have 
different spatial patterns for their 95% HPD CI and RWPIR. INLA-SPDE 
has a wider CI and RWPIR than RF. Generally, southern hilly areas and 
plains in the northwest have higher CI values for INLA-SPDE, while 
southern areas have higher CI values for RF. As for RWPIR with INLA- 
SPDE, it shows a clear edge effect and mesh effect, which means the 
RWPIR in the boundary areas of this study area was generally higher, 
and higher RWPIR occurred in the vertices of small triangles in the 
generated mesh of SPDE. 

4. Discussion 

4.1. Application of INLA-SPDE model for DSM 

In our study, the INLA-SPDE model demonstrated higher prediction 
accuracy compared to the RF model, which is consistent with the find
ings of Beguin et al. (2017) and Giannini Kurina et al. (2019). The 
mapping accuracy of RF model for SOM is similar to the results reported 

Table 2 
The selected covariates after DIC and RFE covariates selection of INLA- SPDE 
and RF. N: natural environmental covariates; NSDSI: RS-based soil moisture 
indices; FTD: Fourier transforms decomposed variables.  

Model Combination 
code 

Covariates 

INLA- 
SPDE 

N PRE, slope, ParentL 
N + NSDSI PRE, slope, ParentL, NSDSI1, NSDSI2, NSDSI3 
N + FTD PRE, slope, ParentL, Amp2, Amp3, Pha1 
N + NSDSI +
FTD 

PRE, slope, ParentL, NSDSI1, NSDSI2, NSDSI3, 
Amp2, Amp3, Pha1  

RF N PRE, DEM, ParentL  
N + NSDSI PRE, DEM, ParentL, NSDSI1, NSDSI2, NSDSI3  
N + FTD PRE, DEM, ParentL, Amp2, Amp3, Pha3  
N + NSDSI +
FTD 

PRE, DEM, ParentL, NSDSI1, NSDSI2, NSDSI3, 
Amp2, Amp3, Pha3  

Fig. 7. Modeling performance of INLA-SPDE and RF with different covariates 
combinations (N, N + NSDSI, N + FTD, and N + NSDSI + FTD). Notes: the blue 
bar graph represents the validation results of covariates combinations after 
covariates selection. N: natural environmental covariates; NSDSI: RS-based soil 
moisture indices; FTD: Fourier transforms decomposed variables. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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by Yang et al. (2019) with RF model using FTD and crop rotation 
covariates (with an accuracy of R2 = 0.43). The main reason for the 
higher accuracy of INLA-SPDE is that it considers not only the re
lationships between soil and environment, but also the geographical 
locations of the measurements which are ignored by RF (Heuvelink and 
Webster, 2022). The semivariogram analysis of SOM indicated a sig
nificant spatial dependency area, with a nugget-to-sill ratio of 21.5% 
(C0 = 0.0404, C = 0.1474, C0/(C0 + C) = 21.5%, exponential model). 

The use of Matérn functions in INLA-SPDE allows for the incorporation 
of spatial dependency information in SOM data. These results may be 
related to that the INLA-SPDE is a generalized additive model (Banerjee 
et al., 2014; Beguin et al., 2017), so this model may be sensitive to 
collinearity and autocorrelation between environmental covariates 
(Wang et al., 2018). 

Different from the Frequentist approach, which calculates uncer
tainty from a large number of realizations, the INLA-SPDE method, 

Fig. 8. The predicted SOM maps using INLA-SPDE (a, b, c, d) and RF (e, f, g, h) models (different columns) with different covariates combination (N, N + NSDSI, N +
FTD, and N + NSDSI + FTD) and their difference map (INLA-SPDE minus RF, i, j, k, l). N: natural environmental covariates; NSDSI: RS-based soil moisture indices; 
FTD: Fourier transforms decomposed variables. 

C. Yang et al.                                                                                                                                                                                                                                    



Geoderma 437 (2023) 116571

11

based on the Bayesian theorem, can describe uncertainty based on the 
posterior density of prediction explicitly (Poggio et al., 2016). In our 
study, the higher uncertainty in the uncertainty map generated by INLA- 
SPDE is mainly caused by the model calculation method way and limited 
soil samples. High RWPIR in boundaries is the so-called edge effect 
(Huang et al., 2017) and high uncertainties occur in nodes of small 
triangulation in the mesh (Fig. 9(b)). Uncertainty also may be higher in 
undersampled areas (sparse sample points), which is similar to regres
sion kriging (RK) (Takoutsing and Heuvelink, 2022). In this case, un
certainty information can be used to guide additional soil sampling for 
improving soil prediction accuracies, for instance, Blackford et al. 
(2022) and Stumpf et al. (2017) developed a method for uncertainty- 
guided soil supplemental sampling and ultimately improving carto
graphic accuracy. In the QRF model, uncertainty quantification based on 
the Frequentist approach is derived from the ensemble of all regression 
tree results, resulting in smoother mapping results (Meinshausen, 2006). 
However, the INLA-SPDE method utilizes joint posterior probability 
density functions (pdfs) based on Bayesian theorem, which facilitates 
the incorporation of predictive model uncertainty (Huang et al., 2017; 
Poggio et al., 2016). 

When using INLA-SPDE, it is important to consider the time cost. 
Although the modeling time of INLA-SPDE is significantly reduced 
compared to MCMC (Poggio et al., 2016; Wu, 2021), it still requires 
more time compared to some commonly used models such as RF. Beguin 
et al. (2017) demonstrated that the time spent on the INLA-SPDE model 
was approximately 134 times greater than that of RF. In this study, the 
time difference is about 30 times. If the model complexity increases 
(such as more small triangles in MESH or more covariates, large areas), 
the time cost and computing ability requirements will increase 
exponentially. 

Further experiments are necessary to fully develop the potential of 
the INLA-SPDE model in DSM. For instance, researchers can investigate 
the MESH settings to balance mapping accuracy and time spent, as well 
as conduct a quantitative evaluation of uncertainty results. Additionally, 

Sun et al. (2021) demonstrated that it is possible to simulate spa
tial–temporal changes in soil properties using INLA-SPDE if multi- 
temporal soil sample points are available. Further applications should 
be conducted to explore the effectiveness of INLA-SPDE in spa
tial–temporal modeling. 

4.2. Application of RS-based soil moisture indices covariates (NSDSIs) in 
SOM mapping 

We utilized the RS-based soil moisture indices (NSDSIs) proposed by 
Yue et al. (2019) and demonstrated a significant positive correlation 
between these indices and SOM (Fig. 6), which is consistent with pre
vious research by Qin et al. (2022) and (Nocita et al., 2013). Further
more, we found that these indices were effective in predicting SOM, as 
illustrated in Fig. 7. This is because soil moisture is a key environmental 
factor affecting the process of dissolution, mineralization, synthesis, and 
material migration of SOM (Li et al., 2022; Li et al., 2019; Yoshida et al., 
2018). For instance, Cates et al. (2022) suggested that a greater relative 
abundance of stable complex compounds in moist soil environments 
protects the SOM from decomposition. Shabtai et al. (2022) demon
strated that high-moisture soil can alter soil minerals, chemical com
positions, and organic-mineral interactions, promoting SOM 
accumulation. Soil moisture can also indirectly influence SOM by 
affecting vegetation growth and consequently carbon input (Han et al., 
2022). In addition, soil moisture may be related to soil microbial and 
enzymatic activities, thereby indirectly affecting SOM (Pushkareva 
et al., 2020; Steinweg et al., 2012). Studies that utilize soil moisture as 
an environmental covariate to map soil properties are scarce. While 
previous soil moisture indices (such as WISOIL and NSMI) have been 
developed, they cannot be applied to conventional multispectral 
broadband satellites (e.g., Landsat and Sentinel) (Yue et al., 2019). Our 
study demonstrates that optical remote sensing-based soil moisture 
indices offer a straightforward and efficient approach to extract soil 
moisture information as useful predictors for soil mapping. 

Fig. 9. The maps of 95% HPD CI and RWPIR for INLA-SPDE (a and b) and RF (c and d, based on QRF) model.  
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Yue et al. (2019) utilized the NSDSI indices to examine bare soil 
regions. The authors suggested that the indices are suitable for areas 
with low vegetation covers, such as deserts and ploughed farmland. 
However, they also noted that other surface features, such as green 
vegetation, exhibit comparable water absorption characteristics be
tween two SWIR bands. To estimate soil moisture in regions with 
varying levels of vegetation coverage, soil moisture indices combined 
with NDVI may be employed using the trapezoid feature method 
(Sadeghi et al., 2017). In our study area, the vegetation coverage is non- 
uniform due to the presence of few broad-leaved forests in high eleva
tion areas, despite the use of a winter satellite image. Future research 
can focus on developing NSDSI-NDVI for application. 

Yue et al. (2019) pointed out that the variations in NSDSIs between 
the four soils in their study area are very small when SM is less than 50%, 
while all SM indices perform poorly when SM is greater than 50%. This 
may be related to the difference in saturated soil moisture content and 
rate of different soil types. The main soil type for farmlands in our study 
area is mainly Ferric-Udic Argosols and Stagnic Anthrosols, and we 
found that there is no significant difference between NSDSIs of the two 
soil types. More experiments can be done for areas with multiple soil 
types to examine how effective the indices are. 

The modeling validation results suggest that using all three soil 
moisture indices (NSDSI1, NSDSI2 and NSDSI3) obtain the best pre
dicting accuracy of SOM (Table.2, Fig. 7, R2 = 0.51, RMSE = 7.04 g 
kg− 1). Yet, when using one of the three soil moisture indices alone, 
NSDSI2 which has the highest correlation with SOM/NorSOM (Fig. 6) 
obtains the highest mapping accuracy (R2 = 0.50, RMSE = 7.28 g kg− 1), 
although the improvement compared with NSDSI1 or NSDSI3 is very 
slight. We recommend that when computational resources are adequate, 
all soil moisture indices should be utilized as input to provide a variety 
of information for soil prediction. In cases where computational re
sources are limited or a concise model is preferred, it may be better to 
select the soil moisture index that exhibits the highest correlation with 
the target soil property. 

Researchers have devoted significant effort to developing effective 
soil moisture indices using remote sensing (RS). For instance, Tian et al. 
(2021) developed a drying process segmentation method to accurately 
estimate soil moisture from spectral reflectance data and proposed the 
Shortwave Normalized Index (SNI). However, the SNI index requires 
experimental measurements of soil samples and is currently not appli
cable for large-scale soil moisture estimation based on RS images. 
Nevertheless, emerging indices may have the potential to serve as 
effective predictors in digital soil mapping (DSM) in future research. 

4.3. Application of FTD covariates in SOM mapping 

The FTD covariates are generated to detect periodic patterns in time- 
series vegetation indices with an objective method (Fourier transform). 
The reason that using the FTD covariates improves the SOM mapping 
accuracies is mainly because the covariates are related to vegetation 
growth features. Furthermore, it is suggested that FTD covariates can 
separate different crop species and crop rotations when combined with 
expert knowledge and field investigation (Yang et al., 2019). In the 
study of Yang et al. (2019), the FTD covariates were only adopted in 
farmland. In our study, we used the FTD covariates in the whole area 
with farmland, forestland, and grassland. It indicates that the FTD 
covariates can be applicable in land covered with vegetation. When 
applying Fourier transform on time series vegetation indices to generate 
FTD covariates, one important issue is that time series images should 
cover key phenological dates or periods of different vegetation species in 
all the land uses. Therefore, it is better to adopt remote sensing images 
with high temporal resolutions, such as Landsat satellite with a temporal 
resolution of 16 days, and Sentinel-2 with 5 days. In case of cloud 
contamination within remote sensing images, multi-source images or 
data fusion may be an option to complete a time series profile for 
describing key growth characteristics of all vegetation types in a study 

area. 

5. Conclusion 

In this study, we examine the effectiveness of RS-based soil moisture 
indices (NSDSI) and Fourier transforms decomposed (FTD) covariates on 
mapping SOM with INLA-SPDE in a study area in central and eastern 
China. The results show that using NSDSI or FTD covariates improved 
SOM mapping accuracies, and INLA-SPDE model exhibited higher 
mapping accuracies than RF. Compared with environmental combina
tion including only natural environmental covariates, the best combi
nation “N + FTD + NSDSI” which contains natural environmental 
covariates, FTD covariates, and soil moisture indices improved the SOM 
accuracy by 23% in terms of R2 and 9% in terms of RMSE. The study 
provides new promising predictors for SOM mapping and proved the 
effectiveness of a Bayesian spatial model, INLA-SPDE. In this paper, we 
only calculated NSDSI indices in winter to represent more bare soil 
spectral information. Further explorations on NSDSI indices in other 
seasons or time-series NSDSI indices can be applied. 
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