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A B S T R A C T   

Vegetation change reflects sensitive responses of ecosystem environment to global climate change as well as land 
use. It is well known that land use type and its transformation affect vegetation change. However, how the 
changes in land use intensity (LUI) within different land use types impact vegetation and the interactions with 
other drivers remain poorly understood. We measured the LUI of Jiangsu Province, China, within the main land 
use types in 1995, 2000, 2005, 2010, 2015 and 2018 by combining remote sensing-based land use data with 
representative county scale economic and social indicators. Structural equation models (SEMs) were built to 
quantify the influences of long term LUI on vegetation change interacting with economic development, climate 
change and topographical conditions in transformed land, cropland, rural settlements and urbanized land, 
respectively. Seventy percent of significant vegetation change existed in non-transformed land use types. 
Although the area with a vegetation greening trend is larger than that with a vegetation browning trend, the 
vegetation browning areas is prominent in urbanized lands and some croplands in south basins. The constructed 
SEMs suggested the dominant negative effect of fast economic development regardless of land use types, while 
LUI played important and different direct and indirect effects on affecting vegetation change significantly 
interacting with economic development and climate change in different land use types. The LUI increasing led a 
vegetation greening in cropland, and stronger than climate warming with both positive direct and indirect effects 
for influencing climate change. The LUI change took negative effects on vegetation change in rural and urban 
areas, while a positive indirect effect of LUI increasing in urbanized land signaled the positive results of human 
managements. We then provided some land use-specific suggestions on basin scale for land management in 
Jiangsu. Our results highlight the necessity of long-term LUI quantification and promote the understanding of its 
effects on vegetation change interacted with other drivers within different land use types. This can be very 
helpful for sustainable land use and managements in regions with fast economic development.   

1. Introduction 

Vegetation is a key element in the global biogeochemical cycles that 
provide water, carbon, and nitrogen to all livings. Vegetation change is a 
sensitive indicator of environment responses to global climate change as 
well as human activities (Haberl et al., 2007; Myneni et al., 1997; Piao 
et al., 2020). Numerous studies have explored into how climate change 
influences vegetation change, and increasingly into the effect of human 
activities. Land use type and its transformation have been widely 

adopted as anthropogenic drivers of vegetation change (Yang et al., 
2021; Zhu et al., 2016). Yet, due to various managements or policies, 
land use intensity (LUI) is heterogeneous within single land use type, 
such as various agricultural intensification level in cropland or urbani-
zation level in urban (Erb et al., 2013; Parihar et al., 2018; Zhang L. 
et al., 2022). The changes in LUI directly disturbs vegetation growth by 
affecting the plant community or interfering the nutrient cycling 
(Gossner et al., 2016; Tamm, 1995). Meanwhile, it may indirectly in-
fluence vegetation change through interacting with other drivers, such 
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as climate change (Choi et al., 2021; Zeng et al., 2020). Therefore, 
examining these direct and indirect effects of dynamic LUI on vegetation 
change helps comprehensively understanding the consequences of land 
use for ecosystem, thereby projecting strategies for sustainable land use 
and management (Chen et al., 2019; Mueller et al., 2014). 

Recently, how the changes in LUI affect environment attracts 
increasing attentions (Allan et al., 2014; Gossner et al., 2016; Verburg 
et al., 2015). The LUI was mostly quantified using indices indicating the 
intensity of human activities within single land use via field surveys or 
experiments on site or plot (Blüthgen et al., 2012; Parihar et al., 2018). 
For instances, Felipe-Lucia et al. (2020) generated a LUI dataset by 
integrating field surveyed mowing frequency, livestock density and 
fertilization level in 150 grassland plots, and proportions of harvested 
volume, nonnative tree species and deadwood with saw cuts in 150 
forest plots in German, and proved that LUI altered ecosystem network. 
Hisse et al. (2022) found that intensified management (e.g., higher plant 
densities and fertilization levels) increased annual crop yield at sites in a 
five-year field experiment. Those studies, usually at plot scales, revealed 
the environmental effects of various LUI mainly during a short period. 
On a regional scale, a few LUI dataset were quantified using the regional 
administrative statistical data, such as county-level crop yield in crop-
land (Ye et al., 2022) or regional harvest statistics ranging from the 
national to provincial or forestry district level in forest (Kuemmerle 
et al., 2016). However, it is still rarely known how LUI affects vegetation 
change on large scales. Especially, the interacted effects between 
long-term LUI and other drivers of vegetation change in different land 
use types on vegetation change are poorly understood. 

To disentangle the interactive effects of natural and anthropogenic 
drivers in vegetation dynamics, different methods have been adopted, 
such as the residual analysis using multiple linear regression (Wen et al., 
2017), the random forest algorithm and linear trend analysis (Leroux 
et al., 2017), the geographical detector (Peng W. et al., 2019a,b), the 
correlation networks analysis (Kleyer et al., 2019) and the structural 
equation model (SEM) (Yang et al., 2021). Among these methods, SEM is 
powerful for the study of multivariate interacting systems (Grace and 
Keeley, 2006), and has been applied to quantify the interactions among 
drivers of the ecological process, such as water quality change (Wang 
et al., 2021), soil organic carbon change (Luo et al., 2017), and vege-
tation change (Yang et al., 2021). Compare to other methods, the SEM 
can quantify not only the direct effect of a driver on the objective var-
iable by removing the influence of other drivers, but also the indirect 
effects of a driver by providing an insight into the underlying mecha-
nism for the objective variable through influencing the other drivers 
named as mediated factors. 

Vegetation in highly developed areas has been significantly altered 
in transformed land undergoing land transformations, but also within 
one land use type with a great range of LUI change due to rapid ur-
banization (Zhang L. et al., 2022) and agricultural advancement (Huang 
and Wang, 2021). Jiangsu Province, China, a developed region, has both 
rapid urbanization and long agriculture history with increasingly 
intensification (Liang et al., 2021). It is a typical area to understand how 
the long-term dynamic LUI affects vegetation growth interacted with 
economic development and climate change. The objectives of this study 
are (1) to quantify LUI of cropland, urban and rural settlements by 
combining remote-sensing based land use types with county-level eco-
nomic and social indicators, and generate a LUI dataset of Jiangsu 
Province in 1995, 2000, 2005, 2010, 2015 and 2018, (2) to analyze the 
spatial-temporal change of vegetation and LUI, and (3) to generate the 
influencing paths of anthropocentric drivers (LUI, economic develop-
ment) and natural drivers (temperature, precipitation, elevation, slope) 
on vegetation change for (a) transformed, (b) cropland, (c) rural set-
tlements and (d) urbanized land, respectively using SEM models. Our 
findings will extend the understandings of the interacted effects of 
natural environment and human activities on vegetation change within 
different land use types on regional scale. 

2. Study area and data 

2.1. Study area 

Jiangsu Province, China, located between 116◦18′-121◦57′E and 
30◦45′-35◦20′N (Fig. 1), has an eastern Asian monsoon climate with 
annual temperature of 13.6–16.1 ◦C and annual precipitation of 1000 
mm. Jiangsu Province lies in the downstream of Yangtze River Basin 
(YZRB) and Huaihe River Basin (HRB) with rich water supply but fragile 
ecological environment on the eastern coast. Besides, two relatively 
isolated water systems (sub-basin) existed within the two basins: Yishusi 
River Basin (YSRB) to the northeast of Huaihe River Basin, and Taihu 
Lake Basin (TLB) to the southeast of YZRB (http://jssslt.jiangsu.gov.cn/ 
art/2020/9/10/art_80216_9499025.html). Because of the large-area 
plains and high-quality soils, Jiangsu Province is an important grain- 
producing area and part of the Yangtze River Delta Economic Zone in 
China. Since China’s reform and opening-up policy started in 1978, with 
increased economic development level from northwest to southeast, 
land use in Jiangsu has experienced obvious changes (Qu et al., 2019). In 
2018, the urbanization rate surpassed national average level, reaching 
~69.6% (http://www.jiangsu.gov.cn/). Of all land areas (excluding 
water systems) in Jiangsu, only ~5% are forest, grassland and bare land; 
the cropland and built-up land accounted ~71% and ~24% 
respectively. 

2.2. Data 

2.2.1. Land use types 
The land use type data at 1 km resolution was extracted from the 

dataset of land use developed by the Resource and Environment Science 
Data Center (RESDC, http://www.resdc.cn/). This dataset is one of the 
most accurate land use products generated through remote sensing in 
China (Liu et al., 2014), and includes national land use type data in 
1980, 1990, 1995, 2000, 2005, 2010, 2015, 2018 and 2020, thus suit-
able for a long time series analysis. The land use types in this dataset are 
divided into six primary/first classes (cropland, forest, grassland, water, 
built-up land and bare land) and 26 secondary classes. With an inter-
pretation with human-computer interaction and field survey data onsite 
verification, the evaluation accuracy of the first level of land use is 
>93% and that of the second level is >90% (Ning et al., 2018). 

We derived the cropland and built-up land covering 95% of Jiangsu 
Province for LUI calculation in each year, and not too intensified land 
use practices exists in the remaining land use types. We excluded pixels 
with water and bare land in any year and pixels with grassland or forest 
in every year. Further, the primary class of built-up land was subdivided 
into rural settlements and urbanized land to identify the LUI disparity 
between rural and urban areas. Specifically, the rural settlements, as a 
secondary class, belonged to the primary class of built-up land. And the 
secondary classes including urban and built-up land for industry, 
transportation or some special usage in the dataset were labeled as the 
urbanized land. 

2.2.2. Economic and social indicators 
Considering the scientific merit, completeness and accessibility of 

data, LUI was assessed via typical human activities in different land use 
types by nine county-scale economic and social indicators (Table 1). 
These indicators were collected from the Statistical Yearbook and agri-
cultural census of Jiangsu Province from 1995 to 2018. 

The typical human activities in cropland are relate to agricultural 
management for increasing food production, including tillage system, 
agricultural mechanization, fertilizer management and water manage-
ment (Jiang et al., 2020; Liu et al., 2020; Temme and Verburg, 2011). 
Accordingly, we collected total sown area, consumption of chemical 
fertilizer and total power of agricultural machinery, respectively. Note 
that the total sown area in 1995 was not available, so we adopt that in 
1997 provided by the agricultural census of China as a substitute. 
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The typical human activities in built-up land are residential activities 
(e.g., industrial, commercial and daily living activities) for improving 
economic growth and life quality (Xia et al., 2020; Yin et al., 2020). Six 
representative economic and social indicators were selected, namely 
freight traffic of highways, employed persons for primary, secondary 
and tertiary industries, total consumption of electricity of the year, and 
electricity consumed in rural areas. The specific indicators for calcu-
lating LUI on rural settlements and urbanized land were in Table 1. 

2.2.3. County boundaries 
The vector data of county boundaries in 1995 (75 counties) and 2015 

(55 counties) were downloaded from RESDC. Then we generated county 
boundaries in 2000, 2005, 2010 and 2018 according to the official 
released articles of county-level administrative division adjustment (htt 
p://jssdfz.jiangsu.gov.cn/art/2019/11/12/art_57470_8810959.html) 
for the data unavailability. 

2.2.4. Vegetation index 
Normalized difference vegetation index (NDVI) has been seen widely 

for representing vegetation growth and observing vegetation change 

over a long spell (Bégué et al., 2011; Liu and Menzel, 2016). The annual 
NDVI data from 1998 to 2018 with a 1 km resolution were downloaded 
from RESDC. The maximum value composite method was applied to 
generate this yearly dataset based on the SPOT/VEGETATION products 
(http://www.vito-eodata.be) for minimizing cloud contamination, at-
mospheric effects and scan angle effects (Holben, 1986). 

2.2.5. Climate and topography 
Annual mean temperature (AMT) and annual gross precipitation 

(AGP) from 1998 to 2018 were produced with the monthly temperature 
and precipitation on software ArcGIS 10.2. The monthly temperature 
and precipitation dataset with 0.5 arc-minute (~1 km) resolution was 
generated by Peng S. et al., 2019, which is reliable based on 496 national 
weather stations across China. 

Two topographic indices, elevation and slope, were derived from the 
SRTM (Shuttle Radar Topography Mission) digital elevation model 
(DEM) v4.1. The original resolution is 90 m and we used a resampled 
DEM with 1 km resolution produced by RESDC. 

2.2.6. Night-time light 
As an important trigger of intensive human activities, the accelerated 

economic development tends to result in increased human disturbance 
to vegetation growth directly and indirectly by influencing LUI (Kou 
et al., 2021). Night-time light (NTL) is an available high-resolution data 
closely related to the economic development level (Liu et al., 2021). We 
used an annual harmonized global nighttime light dataset from 1992 to 
2018 with 30 arc-seconds (~1 km) resolution (Li et al., 2020). 

3. Methodology 

3.1. Quantification of land use intensity of jiangsu 

We quantified the LUI of Jiangsu Province in 1995, 2000, 2005, 
2010, 2015 and 2018. In our study, the calculation unit for LUI was 
generated by overlying county boundaries and land use types using 
ArcGIS 10.2. For each unit, we calculated the LUI with three steps as 
follows. 

Firstly, the intensity (density or frequency) of economic and social 
indicators in each unit of each year were generated. Then, the zero-mean 
normalization method was used to eliminate measurement units among 
indicators (Reverter et al., 2005). We finally added a constant number to 
all the standardized indicators for the negative values after 

Fig. 1. Land use types of Jiangsu Province in 1995 (a) and 2018 (b).  

Table 1 
Economic and social indicators and their weights for calculating the land use 
intensity.  

Main land use 
types 

Economic and social indicators Weight 

Cropland Total Sown Area 0.5 
Consumption of Chemical Fertilizer 0.3 
Total Power of Agricultural Machinery 0.2 

Rural 
settlements 

Electricity Consumed in Rural Area 0.6  

Employed Persons for Primary Industry 0.4 
Urbanized land Total Consumption of Electricity of the Year & 

Electricity Consumed in Rural Areaa 
0.4  

Employed Persons for Secondary Industry & Tertiary 
Industrya 

0.3  

Freight Traffic of Highways 0.3 

Note, the sum of weights of all indicators in each land use type equals to 1, 
detailed information on the weight’s calculation can be seen in section 3.1. 

a Assuming that the consumption of electricity in urbanized land is about the 
remains of total consumption of electricity of the year minus electricity 
consumed in rural area, and the employed persons in urbanized land is about the 
sum of employed persons for secondary industry and tertiary industry. 
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standardization. Secondly, the LUI was calculated in each calculation 
unit using the above standardized indicators with the weighted stacking 
method. The formula is as follows: 

LUIijy =
∑m

1

(
uijym ∗ wjm

)
(1)  

where LUIijy is the LUI of the land use type j of county i in year y; uijym is 
the mth standardized indicator of j at i in y; wjm represents their weights 
as shown in Table 1. 

We determined the indices weights in cropland by reviewing the 
relative importance of each indicator in several published studies about 
the agricultural management intensity quantification in China (Jiang 
et al., 2013; Li et al., 2018; Liu et al., 2020). However, with limited 
effective information found in built-up land, we determined the weights 
on urbanized land and rural settlements referring to an objective method 
of coefficient of variation (CV) (Ren and Fan, 2011): 

wjm =
CVm

∑m

1
CVm

(2)  

where wjm and CVm are the weight and variation coefficient of mth in-
tensity of economic and social indicator in each land use type j (Table 1). 

Finally, considering the coefficients of LUI assigned to different land 
use types in the previous studies listed in Table 2, we assigned co-
efficients of one, two and three for cropland, rural settlements and ur-
banized land when integrating LUI for the whole study area, 
respectively. When there is grassland/forest (natural land) transformed 
from/to the targeted three land use types along the time series, we 
assigned a value of 0.01 to LUI of natural land assuming a very small LUI 
with few human interferences in those grassland/forest. 

3.2. Quantification of effects of driving factors for vegetation change 
using structural equation modeling 

Structural equation modeling, a causality analysis method (Pearl, 
1998), has been increasingly developed in exploring complex influence 
networks in ecosystems recently (Chen et al., 2022; Lian et al., 2021). 
This approach encompasses a set of multivariate statistical techniques, 
including factor analysis, regression, path analysis and simultaneous 
equation modeling (Hou et al., 2014). SEM has several advantages for 
detecting the influences of driving factors on vegetation change. First, a 
variable can be dependent in one set of relationships while independent 
in another set of relationships. Second, the SEM separates the direct and 
indirect causal effects based on the mediation theory of path analysis. 

Changes in climate (AMT and AGP), terrain conditions (elevation 
and slope), economic development (NTL change) and LUI change were 
taken as drivers to build an SEM of vegetation change. The NDVI trend 
from 1998 to 2018 was calculated through linear regression on each 
pixel with the NDVI value as the independent variable and the according 
year of NDVI as the dependent variables (Bégué et al., 2011). The slope 
of the function was defined as the trend of NDVI per year. A larger 
positive slope represents a faster increase in NDVI. Additionally, we 

assumed a linear change in intervals of LUI dataset. Thus similarly, 
slopes of AMT, AGP, LUI and NTL were also calculated as the trends. 

We focused on areas with significant vegetation change examined by 
F-test, so pixels with significant slope (p < 0.05) of NDVI trend were 
selected as the target samples for building the SEM. Then, these pixels 
were labeled by four land use types, i.e., a) transformed land, b) crop-
land, c) rural settlements and d) urbanized land. The transformed land 
consists of areas once labeled by different land use types before 2018. 
SEMs were constructed for the four land use types, respectively. The 
specific procedure is as follows. 

3.2.1. Building a graphical conceptual model 
The hypotheses in the graphical conceptual model in Fig. 2 are based 

on knowledges about the driving mechanism of vegetation change 
through a literature review (Liu and Menzel, 2016; Liu et al., 2019; Zhu 
et al., 2016). First, natural and anthropogenic drivers directly influenced 
vegetation change. Meanwhile, the vegetation change had feedback on 
the changes of the two climatic drivers. Second, the slope and elevation 
may influence vegetation change indirectly by affecting all the other 
drivers. Economic development (NTL trend) may indirectly influence 
vegetation change by altering the LUI trend. And the LUI change could 
influence vegetation change by affecting regional climate (AMT and 
AGP trends). The climatic drivers change might also have indirect effects 
on vegetation change through influencing economic development. 
Moreover, two correlations were assumed: One is between the change of 

Table 2 
Reviews of coefficients of human activities intensity assigned to different land use types.   

Forest/Grassland Cropland Built-up land Reference 

Rural settlements Urbanized land 

Land use intensity 
comprehensive index 

1,2 3 4 Zhuang and Liu (1997) 

Landscape development 
intensity 

1, 1.58, 1.83, 2.02, 2.77, 
3.41, 3.68, 3.74 

4.54, 7 6.9, 6.92, 7.47, 
7.55, 7.7 

7.81,8,8.07,8.28,8.29,8.32,8.66,9.18,9.19,9.42,10 Brown and Vivas (2005) 

Human activity intensity of 
Land surface 

0,0.067,0.133 0.2 0.6 0.6，1 Xu et al. (2015) 

Human interference index 0 0.2–0.4 0.6–1 Chi et al. (2018) 
Human footprint 0 6,7,8 8,10 Sanderson et al. (2002);  

Venter et al. (2016)  

Fig. 2. Graphical conceptual model of vegetation change from 1998 to 2018 in 
Jiangsu. Boxes represent the observed variables; the gray arrows between 
variables identify the potential cause-and-effect relations; the blue double 
arrow means the correlation. NTL, night-time light; LUI, land use intensity; 
AMT, annual mean temperature; AGP, annual gross precipitation. (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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AMT and AGP; the other is between the elevation and slope. 

3.2.2. Mathematical SEM construction and revision 
On basis of the target pixels with significant vegetation change, we 

extracted the trends of NDVI, NTL, LUI, AMT and AGP and the values of 
elevation and slope as the input data in a mathematical SEM according 
to the graphical conceptual model. Maximum likelihood estimation was 
adopted for structural equation modeling using the sem function of the 
‘lavaan’ package in the R.3.5.0 (Rosseel, 2012). In general, a good fit of 
SEM model satisfies most of the assessment indices including a lower 
root mean square error of approximation (RSMEA) than 0.05, lower 
standardized root mean square residual (SRMR) than 0.08, higher 
comparative fit index (CFI) than 0.95, higher Ttucker-Lewis index (TLI) 
than 0.9 (Hu and Bentler, 1998), lower chi-square/df ratio than 2 or 5 
(Schumacker and Lomax, 2004), and bigger p value of the t-test than 

0.05 (Marsh and Hocevar, 1985). If the model fitted with poor 
goodness-of-fit indices or physical significance, it was revised by delet-
ing non-significant path (p > 0.05) or changing the paths by the ‘modify’ 
function of ‘lavaan’. Finally, we built the SEMs by satisfying indices 
including CFI, TLI, SRMR, RMSEA, chi-square/df ratio and p value. 

3.2.3. Quantifying direct and indirect effects of driving factors on 
vegetation change 

The standardized path coefficients between variables in the final 
SEM were adopted for quantifying the effects of the driving factors on 
vegetation change. A larger path coefficient indicated a larger effect. 
The total effect (TE) of a variable on the target variable consisted of both 
direct and indirect effects (Grace et al., 2016). The direct effect (DE) of a 
variable (such as the effect of LUI change on vegetation change) was the 
path coefficient on the arrow which directly pointed to vegetation 

Fig. 3. Spatial distribution of significant NDVI trends (p < 0.05) from 1998 to 2018 (a) and frequency distribution of the significance level (p value) of the trends (b). 
The area percent of each basin of each land use type in total areas of significant vegetation changes including vegetation browning trends (c) and vegetation greening 
trends (d). C, cropland, R, rural settlements, U, urbanized land, NC, new cropland, NR, new rural settlements, NU, newly urbanized land, NN, new natural land. The p 
value of the trend in vegetation for each pixel is estimated based on t-test. 
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change from the variable. The indirect effect was measured by the 
multiplication of coefficients from LUI change to a mediator variable 
(such as AMT change) and the coefficients from the mediator variable to 
vegetation change. Moreover, the indirect effect was the sum of all in-
direct coefficients of every indirect path between one driving factor and 
vegetation change. 

4. Results 

4.1. Spatial-temporal variation of vegetation in Jiangsu Province 

The NDVI trend in Fig. 3a shows the significant vegetation change (p 
< 0.05) ranging from − 0.038 yr-1 to 0.053 yr-1 with high spatial het-
erogeneity in recent two decades. The total area of significant vegetation 
greening is 37.5% larger than the browning area as shown in Fig. 3b, but 
vegetation browning is also significant enlarging from northwest to 
southeast. We further find that about 70% of significant vegetation 
change existed within non-transformed land use. Cropland has the 
largest area with both vegetation greening (mostly in YSRB and HRB, 
Fig. 3c) and browning (mainly in HRB, YZRB and TLB, Fig. 3d). Rural 
settlements in northern two basins mainly have vegetation greening 
trends, while most rural settlements in southern basins have vegetation 
browning trends. Besides, most urbanized land and new urbanized land 
in the whole province show an obvious browning trend. Besides, new 
cropland and rural settlements both show the larger greening areas 
(mostly in YSRB and HRB) than browning areas. 

4.2. Spatial-temporal variation of LUI in Jiangsu Province 

The LUI from 1995 to 2018 is mapped in Fig. 4a to f. The spatial LUI 
change over years and the trends in each land use type on a basin scale is 
shown in Fig. 5a and b. In 1995 and 2000, the LUI was evenly distrib-
uted, except high LUI in some cities of southern Jiangsu (Fig. 4a and b). 
From 2005 to 2018, the dynamic LUI gradually exhibited a large spatial 
and temporal variability from northwestern to southeastern basins 
(Fig. 4c-f). This is mainly due to the dynamic LUI within C and NU for 
urban expansion (Fig. 5b). In cropland, the LUI increased quickly in 
YSRB, while slowly in HRB, but it decreased in southern Jiangsu (Figs. 1 
and 5b). The NU manifested the largest increasing trend overall Jiangsu. 
A large variation of LUI trends (a wider box in Fig. 5b) in southern basins 
indicates diverse LUI changes under rapid urbanization. As for U, the 
LUI in YSRB and TLB increased faster than that in the other two basins 
(Fig. 5b). Yet, the LUI of R remained almost unchanged except that in 
TLB. The LUI consistently increased in NR but decreased in NC and NN 
in all basins. The dynamic LUI indicates an overall increase but spatially 
and temporally different patterns, especially within C, R and U, which 
highly addresses the necessity of basin and land dependent management 
in LUI. 

4.3. SEMs for vegetation change 

The four fitted SEMs for (a) transformed land, (b) cropland, (c) rural 
settlements and (d) urbanized land are presented in Fig. 6, with their 
model evaluation indices in Table 3. These models indicate that the fast 
economic development represented by the NTL change was the main 
driver of vegetation browning regardless of land use types in Jiangsu. 
The LUI change is also a contributing factor, but its relative importance 
and impacts were diverse in driving vegetation change across land use 
types. In addition, the SEM for urbanized land indicates a quite different 
mechanism compared to those for other land use types. The details of 
each SEM are as follows. 

4.3.1. SEM for transformed land 
The NTL change has the largest total effects (TE = − 0.67) on vege-

tation change, followed by LUI change (TE = − 0.25), elevation (TE =
0.25), AMT change (TE = 0.23), AGP change (TE = − 0.13) and slope 

(TE = − 0.04). Both faster economic development (larger positive NTL 
slope) and larger LUI increase for land transformation (e.g., cropland 
transforming into urbanized land indicates a larger LUI increase than 
rural settlements transforming into urbanized land) lead to vegetation 
browning directly with little interaction with climate change. The 
negative direct effect of NTL change (DE = − 0.57) is larger than that of 
LUI change (DE = − 0.23). Meanwhile, accelerated economic develop-
ment indirectly exacerbates the vegetation browning by hastening the 
LUI increasing (Fig. 6a). Among the natural drivers, both higher eleva-
tion and faster warming (a faster AMT increase) directly lead to vege-
tation greening, and this positive DE is strengthened by negatively 
influencing the economic development. The vegetation greening 
preferred a lower slope due to indirect effects. Additionally, with only 
negative indirect effect of AGP change on vegetation change, the vege-
tation enhancement prevents a higher rise in AGP with a coefficient of 
− 0.19. 

4.3.2. SEM for cropland 
The total effects of NTL change, LUI change, elevation, AGP change, 

AMT change, and slope on vegetation change are − 0.63, 0.27, 0.17, 
− 0.13, 0.12 and − 0.04 respectively (Fig. 6b). The faster economic 
development produces direct negative effects on vegetation change, and 
it also brings indirect negative effects through influencing the LUI 
change. The increasing LUI in cropland directly leads to vegetation 
greening (DE = 0.13). Meanwhile, increasing LUI indirectly positively 
influences vegetation change through accelerating regional warming 
(IE = 0.06) and preventing AGP increasing (IE = 0.08). As for the natural 
drivers, similarly, the AMT change and elevation are both directly and 
indirectly enhancing the vegetation growth but slope has negative in-
direct effects. Besides, it shows a significant direct negative effect of AGP 
increasing on vegetation greening. 

4.3.3. SEM for rural settlements 
Economic development is still with the largest TE of − 0.65 for 

aggravating vegetation browning directly and indirectly, and both the 
change of two climatic drivers have larger effects than LUI change. The 
AGP change (TE = − 0.42) is a more important driver than AMT change 
(TE = 0.23) due to its role in accelerating economic development. The 
LUI increase exerts a total effect (− 0.20) by indirectly preventing 
vegetation greening through influencing two climatic factors (Fig. 6c). 
Similarly, the effects of elevation and slope are the smallest with TE of 
0.13 and − 0.03. 

4.3.4. SEM for urbanized land 
The effects of each driver in urbanized land are greatly different from 

those in other models. The change of NTL and AGP has the same biggest 
total effects on vegetation change (TE = − 0.33), followed by the AMT 
change (TE = − 0.17), LUI change (TE = − 0.14), slope (TE = 0.06) and 
elevation (TE = − 0.03) (Fig. 6d). Faster economic development still, 
directly and indirectly, causes vegetation browning, but the relative 
importance is smaller than that in other models. The changes of two 
climatic drivers are more important than LUI change in driving vege-
tation change. Both the higher rise in AGP and AMT leads to vegetation 
browning directly. However, although a faster LUI increase has a direct 
negative effect on vegetation greening, 18% of the negative effects are 
offset indirectly by preventing regional warming. The total effects of 
slope or elevation are also small but the direction of effects is contrary to 
that in other models. 

5. Discussions 

5.1. Divergent direct and indirect effects of LUI change on vegetation 
change 

The SEM models of different land use types have a similar structure 
with different directions and influencing coefficients of effects of each 
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Fig. 4. The land use intensity of Jiangsu Province in 1995 (a), 2000 (b), 2005 (c), 2010 (d), 2015 (e) and 2018 (f). The five class breaks of LUI in 1995 were 
generated with the classification method of Natural Breaks (Jenks) in ArcGIS 10.2, and the breaks of the five classes were then taken as the standard for LUI in the 
other years so that the intervals are comparable with different maximum or minimum values. 
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factor. Although the economic development shows the dominate nega-
tive effects on vegetation change regardless of land use types, LUI has a 
divergent important effect on vegetation change interacted with eco-
nomic development, climate change and topography in different land 
use types. This indicates the importance of understanding the effects of 
the long-term dynamic LUI interacted with other drivers on vegetation 
change. 

The SEM of cropland supports that the vegetation greening was 
mainly because of intensified agricultural management (LUI increasing) 
and regional climate warming (AMT increasing). Which is similar with 
the studies of Feng et al. (2021) and Piao et al. (2020). Furthermore, we 
found the strong interactions between long-term LUI change and climate 
change. The LUI increasing has a positive effect on climate warming, and 
climate warming enhances vegetation greening for generally extending 
the growing season of plants (Keenan and Riley, 2018). At meantime, 
LUI change has a negative effect on AGP change, and the AGP increasing 
is negative for crop growth (IE = 0.08). This might be because Jiangsu 
has adequate precipitation, and more precipitation in south Jiangsu 
could damage plants growth, but less precipitation in north Jiangsu did 
not influence the plant growth with the sufficient irrigation system 
(Huang and Wang, 2021). Besides, the SEM supports that an 
anti-intensification (LUI decreasing) threatened the crop growth of two 
southern basins under faster economic development (NTL increasing). 
This anti-intensification might result from the cropland abandonment 
for labors decreasing in rural settlements (Liang et al., 2021). 

In regard to rural settlements and urbanized land, the LUI change has 
both negative total effects on vegetation change with the intensified 
land use. But for rural settlements, LUI has no significant direct effects, 
which is might because LUI in most rural settlements changed not much 
(except Taihu Lake Basin as shown in Fig. 5b). Meanwhile, the SEMs 
suggest different indirect effects of LUI in rural and urban areas. In rural 
settlements, LUI has negative indirect effects through influencing 
climate (Fig. 6c). Yet, interestingly, a positive indirect effect of LUI 
increasing is significant through influencing climate warming in ur-
banized lands when the climate warming heightened the vegetation 

browning only in urbanized land (Weng et al., 2004) (Fig. 6d), such as 
the vegetation greening trends are found in few cores of cities in 
southern Jiangsu under increasing LUI (Figs. 3a and 5a). This finding is 
consistent with some new recent findings on enhanced vegetation 
greening in cities under human management (Jia et al., 2018; Zhang L. 
et al., 2022). Besides, LUI increasing is also accelerated by economic 
development within built-up lands, but only limited by the high eleva-
tion in rural for the intensive human activities of recreation and tourism 
on mountain of cities (Pickering and Hill, 2007). 

The constructed SEM in transformed land is consistent with previous 
studies. Those studies suggested that the vegetation growth is directly 
threatened by land transformations with an increasing of LUI, such as 
other land use transformed to NU in all basins (Fig. 3d) (Yang et al., 
2021; Zheng et al., 2021; Zhong et al., 2019). Furthermore, the SEM 
model addressed that this LUI increasing is accelerated by economic 
development without limitations of elevation, which is an alarming for 
the economic induced land transformation ignoring the environment 
protection in developed region. Unexpectedly, the LUI change in terms 
of land transformations shows the very less interaction with climate 
change in our model. This may due to the land transformations with 
large influences on climate change, like deforestation, less happen in 
developed region. Besides, the stronger interaction between LUI and 
climate change within land use type indicates the influences of land use 
on climate change might depend more on the LUI within land use type 
rather the land transformations in Jiangsu which have been dominated 
by humans with a long history. 

5.2. Implications for land management in sustainable land use 
intensification 

The diverse direct and indirect effects of LUI on vegetation change in 
different land use types suggest the necessity of land management for 
sustain development (Fig. 6). As one of the vital food base of China, the 
key to sustain managements in cropland of Yishusi River Basin and 
Huaihe Basin is to keep the steady food production while minimize the 

Fig. 5. Trends (slopes) of LUI from 1995 to 2018 (a) and boxplot of land use intensity trends in each land use type of each basin (b). The red dashed line is the 
baseline of 0. C, cropland; R, rural settlements; U, urbanized land; NC, new cropland; NR, new rural settlements; NU, newly urbanized land; NN, new natural 
vegetated land. The new land use types represent those transformed from other types before 2018. The new natural vegetated land represents the new grassland and 
new forest. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Path diagrams of the fitted SEMs and the total effect (TE), direct effect (DE) and IE_x (indirect effects of one driver on vegetation change through another 
driver x (mediated factors)) of these anthropocentric and natural drivers on NDVI_s in the transformed land use types (a), cropland (b), rural settlements (c) and 
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possible negative consequences of climate change (Zhang et al., 2022) 
and economic-induced unreasonable managements. The Climate-Smart 
Agriculture (CSA, https://www.fao.org/climate-smart-agriculture/ove 
rview/en/) can be recommended as one potential management mode 
for containing greenhouse gas and supporting crop growth while 
increasing organic matter storage in soils (Silva et al., 2021). Mean-
while, the promotion of the agricultural scale management can be 
considered to control vegetation degradation in southern Jiangsu and 
some central area of Huaihe River Basin for avoiding the cropland 
mismanagement. As for in urban and rural, due to the larger influences 
of climate change on vegetation growth, more policy supports are 
demanded to improve the adaptability of vegetation to regional climate 
change, such as the selection of vegetation species (Norton et al., 2015). 
Meanwhile, due to the negative effect of LUI on vegetation change in 
urban and rural under fast economic development, policies could guide 
land use with low-carbon life and industrial production in those areas, 
such as the greener daily commute, recreation and cleaner industrial 
production. In addition, policy on Smart Growth for controlling urban 
sprawl (Downs, 2005) is also needed in rural areas of southern Jiangsu. 

5.3. Research significance, limitations and prospects 

The environmental effects of LUI change within different land use 
types on a regional scale are poorly understood so far. We first obtained 
the LUI change based on the representative county-scale economic and 
social indicators from 1995 to 2018 in Jiangsu Province, and then 
explored the effect of LUI change and its interactions with other drivers 
on vegetation change in different land use types. Our study helps 
recognize vegetation change patterns and its complex underlying 
mechanisms under increasingly intensive land use to provide compre-
hensive views in policy-making for regional sustainable land use and 
management. 

There are still some limitations of our study. The statistical data on 
the county scale were limited with their spatial resolution, though they 
are the most detailed and longest records of human activities on land on 
a regional scale. Besides, the weight assignment of each land use type for 
LUI calculation is also a challenge at present. Thus, in the future, more 
innovative methods are needed for producing the long-term LUI dataset 
on a regional and global scale to understand the environmental effects of 
land use intensification. 

urbanized land (d). Path diagrams contain rectangles for observed variables, curves with double arrows for correlations, and straight lines with single arrows for 
linking a driver to point a predicted variable. The values on the arrows were the effect sizes. The thickness of the arrows was proportional to the effect size. Green and 
red lines represent the significant positive and negative paths (p < 0.05). For the stack column charts, the abscissa labels of 6 bars are the vegetation change drivers 
(EA_s (s means slope), LUI_s, AMT_s, AGP_s, Slp and Ele), and the diamond on each bar is the TE by summing the DE and all IE_x on this bar. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. (continued). 

Table 3 
The evaluation indices of the SEM models.    

Transformed land Cropland Rural settlements Urbanized land 

Relative Goodness-of-Fit Indices CFI 1 1 0.999 0.998 
TLI 0.999 1 0.993 0.995 

Absolute Goodness-of-Fit Indices RMSEA 0.008 0.000 0.024 0.011 
SRMR 0.002 0.000 0.010 0.013 

The Chi-Square test Statistic Chi-Square 4.151 0.427 9.206 7.268 
Chi-Square/df 2.076 0.214 2.302 1.211 
p 0.126 0.808 0.056 0.297 

Sample number n 15,450 30,935 2196 1634  
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6. Conclusion 

This study quantified the direct and indirect effects of LUI trends on 
vegetation change interacting with ecological development, climate 
change and topographic condition in transformed land, cropland, rural 
settlements and urbanized land in Jiangsu Province, China from 1998 to 
2018 using SEM. With the vegetation browning area expanding from 
northwest to southeast, Jiangsu showed a 70% of significant vegetation 
change in C, R and U indicating the importance of mechanisms of 
vegetation change within land use types for environment managements. 
The SEMs suggested the dominant total negative effect of economic 
development on vegetation change in all land use types. Meanwhile, the 
LUI change produced significant diverse direct and indirect effects on 
vegetation change indicating the potentials of environment protection 
through managing LUI. The LUI increasing in cropland (mainly due to 
agriculture intensification) directly promotes vegetation greening, and 
it also indirectly enhances vegetation growth due to the strong in-
teractions with climate change. Thus, the total effects LUI in cropland 
ranks the second behind the economic development. Yet, the vegetation 
change in both rural settlement and urbanized land are negatively 
influenced by LUI increasing and shows more sensitivity to climate 
change than LUI change, while the LUI increasing in urbanized land 
takes a distinctive positive indirect effect through influencing climate 
warming. Our study highlighted the importance of long-term LUI 
quantification and promoted the understanding of its effects on vege-
tation change in different land use types for regional land managements. 
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