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Abstract
Cropland soil carbon not only serves food security but also contributes to the stability of the
terrestrial ecosystem carbon pool due to the strong interconnection with atmospheric carbon
dioxide. Therefore, the better monitoring of soil carbon in cropland is helpful for carbon
sequestration and sustainable soil management. However, severe anthropogenic disturbance in
cropland mainly in gentle terrain creates uncertainty in obtaining accurate soil information with
limited sample data. Within the past 20 years, digital soil mapping has been recognized as a
promising technology in mapping soil carbon. Herein, to advance existing knowledge and
highlight new directions, the article reviews the research on mapping soil carbon in cropland from
2005 to 2021. There is a significant shift from linear statistical models to machine learning models
because nonlinear models may be more efficient in explaining the complex soil-environment
relationship. Climate covariates and parent material play an important role in soil carbon on the
regional scale, while on a local scale, the variability of soil carbon often depends on topography,
agricultural management, and soil properties. Recently, several kinds of agricultural covariates have
been explored in mapping soil carbon based on survey or remote sensing technique, while,
obtaining agricultural covariates with high resolution remains a challenge. Based on the review, we
concluded several challenges in three categories: sampling, agricultural covariates, and
representation of soil processes in models. We thus propose a conceptual framework with four
future strategies: representative sampling strategies, establishing standardized monitoring and
sharing system to acquire more efficient crop management information, exploring time-series
sensing data, as well as integrating pedological knowledge into predictive models. It is intended
that this review will support prospective researchers by providing knowledge clusters and gaps
concerning the digital mapping of soil carbon in cropland.

1. Introduction

Soil constitutes the largest carbon pool in terrestrial
ecosystems (Paustian et al 2016, Sun et al 2020). Soil
carbon is the critical component of soil fertility to
sustain plants, animals, and humans (Rumpel et al
2018). The spatial distribution of soil carbon not only
helps in figuring out soil organic carbon (SOC) con-
tent/stock over regions but also contributes to sup-
porting Earth system modeling and sustainable land
management (Dignac et al 2017, Mandal et al 2020).
However, precise quantification of global soil carbon

stock remains challenging mainly because of sparse
soil observations over the world, especially at deep
depths, also leading to the great uncertainty in ter-
restrial carbon stock estimation (Piao et al 2009).
Therefore, it is important to develop effective meth-
ods to measure and monitor the spatially accurate
information of soil carbon, especially based on lim-
ited sample data (Tautges et al 2019, Varney et al
2020).

Cropland covers 12% of the Earth’s ice-free land
(Foley et al 2011). Arable soils under considerable
threat in many regions are facing the issue of soil
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quality degradation (Haddaway et al 2016, Clark and
Tilman 2017). Evidence points to the long decline in
the soil carbon stock contributing 116 Pg of carbon
(as CO2) to the atmosphere and less organic carbon
to hydrographic environmental sediments with the
first furrow of human cultivation (Schlesinger and
Amundson 2019). Concerns about increased green-
house gas emissions from degraded cropland have
drawn international attention. The international ini-
tiative ‘4 per 1000’ attaches great importance to
the managed agricultural fields for the potential of
increasing SOC stock (Minasny et al 2017). Other
global initiatives included RECSOIL, launched by
FAO, recalled for sequestering more carbon in poten-
tial soils (cropland and degraded soils) (FAO 2019).
Cropland has great potential in carbon sequestra-
tionwhich can be achieved through effectivemanage-
ment practices (Nikolaidis 2011, Gattinger et al 2012,
Paustian et al 2016). To understand the current status
and changing of cropland carbon content and stock
can shed light on maintaining soil fertility, decision-
making for land management and enabling a realistic
assessment of carbon sequestration capacity (Lacoste
et al 2014, Lamichhane et al 2019).

Conventional soil carbon investigation methods
based on field experiments are time- and labor-
consuming (Guo et al 2020). In recent decades, digital
soil mapping (DSM) has become a vital way to obtain
spatial information on soil carbon (McBratney et al
2003, Sanchez et al 2009, Minasny and McBratney
2016). Following the soil formation theory (Jenny
1941),McBratney et al (2003) developed a conceptual
DSMparadigmdescribing the empirical for empirical
quantitative relationships between soil and environ-
mental covariates, called ‘scorpan’ model:

SC = f(s, c,o, r,p,a,n) .

The environmental covariates, comprised of soil
(s), climate (c), vegetation (o), topography (r), par-
ent materials (p), time (a), and space (n) are rep-
resent the soil-forming environment (Jenny 1941,
McBratney et al 2003). With DSM techniques, a
quantitative relationship ( f ) between observed soil
properties and environmental covariates is firstly con-
structed, and then used to predict soil properties
of un-sampled locations based on the relationship
(figure 1). With advances in DSM, the estimates of
soil carbon have improved over the past decade. Plot-
scale, local, regional, and global applications of map-
ping soil carbon have been conducted (Guevara et al
2018, Poggio et al 2021).

Despite great advances in DSM in recent years,
acquiring satisfying accuracy for mapping crop-
land’s carbon is not a simple exercise because
of uncertainties surrounding carbon predictions in
plains or small-scale cropland (Guo et al 2020,
Wadoux et al 2021). Most cropland worldwide is

distributed in the area with flat terrain, thus the
observed heterogeneities for commonly involved
natural factors (such as topography) are limited
(Stevens et al 2014). Moreover, human activities
such as irrigation, crop rotation, and fertilization
have a greater impact on soil qualities (Mandal
et al 2020), while obtaining quantitative agricul-
tural management information is difficult. Using
weakly related environmental covariates to repres-
ent the characteristics of the spatial distribution
of soil carbon in agricultural areas paints only a
partial picture (Hamzehpour et al 2019). Differ-
ent strategies could be obtain scientific insights into
the soil processes, pedological knowledge is required
when selecting environmental covariates (Wadoux
et al 2021). Research into and exploring new covari-
ates in cropland should be improved to provide bet-
ter maps and tools for the accurate assessment of soil
carbon to promote action andmulti-stakeholder par-
ticipation in crop production.

Recent advances in both sampling, environmental
covariates availability, and spatialmodeling improved
our ability to measure cropland soil carbon and
its dynamics (Lacoste et al 2014, Lamichhane et al
2019). For example, World Soil Information Ser-
vice provides quality-assured and standardized soil
profile data over 5.8 million records to assist large-
scale DSM and environmental applications (Batjes
et al 2020). Additionally, numerous potential covari-
ates are provided by remote sensing techniques such
as the Landsat satellite (Taghizadeh-Mehrjardi et al
2016), the moderate resolution imaging spectrora-
diometer (MODIS)-based satellite (Chen et al 2019),
and Sentinel-2 hyperspectral sensor (Zepp et al 2021).
Progress in proximal sensing and the development
of spectral libraries showed great promise in mon-
itoring soil carbon (Arrouays et al 2020). To handle
the booming geographic covariates, diverse advanced
computational techniques have been explored for
their applicability in optimizing the prediction of soil
carbon (Wadoux et al 2020).

This paper reviews the digital mapping of soil car-
bon in cropland, including predictive methods and
environmental covariates, and highlights some chal-
lenges and opportunities to accuratelymap andmon-
itor soil carbon in cropland for future work. First,
this article introduces an overview of general find-
ings in soil carbonmappingwithin cropland, in terms
of the temporal and spatial characteristics of the rel-
evant studies. Second, the article identifies the most
regularly used predictive models and environmental
covariates in recent years in the context of the par-
ticular conditions of cropland. Particularly, we put
more focus on agricultural information and discuss
the section in two parts, crop information and agri-
cultural management. Then, the review also assesses
studies using soil information based on proximal and
remote soil sensing. Based on the above summary, we
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Figure 1. Schematic diagram of DSM in cropland based on McBratney et al (2003).

identify some challenges followed by an analysis on
how to get further improvement. Finally, this review
proposes future research directions and trends for
digital mapping of soil carbon in cropland.

2. A summary of digital mapping of soil
carbon in cropland

Focusing on the digital mapping of soil carbon in
cropland, we conducted a literature search that was
confined to only those employed environmental cov-
ariates in digital mapping of soil carbon studies
(McBratney et al 2003) and published in English.Web
of Science was queried by several expressions:

crop∗ AND carbon AND map∗ AND ‘digital
mapping’

crop∗ AND carbon AND map∗ AND ‘digital soil
mapping’

crop∗ AND carbon AND map∗ AND predict∗

agricul∗ AND carbon AND map∗ AND ‘digital
mapping’

agricul∗ AND carbon AND map∗ AND ‘digital
soil mapping’

agricul∗ AND carbon AND map∗ AND predict∗

field∗ AND carbon AND map∗ AND ‘digital
mapping’

field∗ AND carbon AND map∗ AND ‘digital soil
mapping’

field∗ AND carbon AND map∗ AND predict∗

crop∗ AND ‘organic matter’ AND map∗ AND
‘digital mapping’

crop∗ AND ‘organic matter’ AND map∗ AND
‘digital soil mapping’

crop∗ AND ‘organic matter’ AND map∗ AND
predict∗

agricul∗ AND ‘organic matter’ AND map∗ AND
‘digital mapping’

agricul∗ AND ‘organic matter’ AND map∗ AND
‘digital soil mapping’

agricul∗ AND ‘organic matter’ AND map∗ AND
predict∗

field∗ AND ‘organic matter’ AND map∗ AND
‘digital mapping’

field∗ AND ‘organic matter’ AND map∗ AND
‘digital soil mapping’

field∗ AND ‘organic matter’ AND map∗ AND
predict∗

farm∗ AND ‘organic matter’ AND map∗ AND
‘digital mapping’

farm∗ AND ‘organic matter’ AND map∗ AND
‘digital soil mapping’

farm∗ AND ‘organic matter’ AND map∗ AND
predict ∗

Each potential study was assessed suitability by
title, then by abstract to estimate the possibility of
using environmental covariates, and lastly confirmed
according to the main text. From this search, we
extracted 144 previous studies through Web of Sci-
ence databases from 2005 to 2021.
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Figure 2. The map of the number of published articles on soil carbon mapping from 2005 to 2021 across global countries.

Figure 3. (a) The number of published papers on soil carbon mapping in cropland from 2005 to 2021. (b) The maximum soil
depth is reported in papers. The counts exclude 6.25% of the articles (9 of 144) without reporting soil depth. The percentage of
maximum depth intervals shown on the right y-axis is proportional to the articles reporting maximum depth.

2.1. Geographic distribution and temporal trend of
the published studies
Figure 2 depicts the spatial distribution of the number
of articles over the study period of this review. These
researches were conducted in 34 countries, mainly
including China (26.49% of articles), the United
States (11.26% of articles), Iran (7.28% of articles),
and Australia (6.62% of articles), etc. Basic national
conditions (i.e. policy environment, historical found-
ation, and land resources) influence the distribution
of soil map studies.

Figure 3(a) gives details of each year’s publications
during the period 2005–2021. A growing number of
studies have suggested a higher demand for soil car-
bon information. Simultaneously, greater access to
computational tools coupled with the development
of prediction methods has promoted more efficient
and rapid ways tomap soil carbon in different regions

(Miller and Schaetzl 2014, Brevik et al 2016). Thus,
the 21st century has become a period of booming
research on the digital mapping of soil carbon.

2.2. Keywords analysis
Keyword frequency analysis can examine the hot
research contexts. Figure 4 shows that key words
about various predict models occur frequently, sug-
gesting that the effective ofmodels has become a com-
mon research field. Meanwhile, keywords relevant to
technique to obtain environmental covariates (e.g.
‘imaging spectroscopy’, ‘landsat’, and ‘sentinel-2’)
sustained rapid growth. This indicates that the spec-
troscopy methods are becoming more popular and
accessible to researchers in the DSM. The emergence
of ‘climate change’ indicates the growing concern of
soil carbon in the science of climate change.
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Figure 4. The frequency of keywords during 2005–2021.

2.3. Soil sampling and the maximum depth of
interest
The design of sampling points is a vital, first step
in DSM (Zhu et al 2008, Brus 2019), and affects
the mapping result and accuracy of DSM (Piikki
and Söderström 2019, Paul et al 2020a, Zhang et al
2022). The increasing study interest from map-
ping the spatial variation of SOC to mapping the
dynamics of SOC requires an increasing demand
for effective soil sampling. Common sampling meth-
ods include design-based sampling (e.g. stratified
random sampling, systematic sampling) and model-
based sampling (e.g. geostatistical sampling and
centered grid sampling) (Zhang et al 2017a, Brus
2019).

Figure 3(b) presents the maximum sampling
depth reported in 143 articles, 6.25% (9) of which did
not report the sampling depth. Among the 135 art-
icles reporting a sampling depth, 102 (76.30%) art-
icles focused on soil information in topsoil with a
sampling depth less than 30 cm. Studies on deep soil
with a sampling depth larger than 30 cmwere less rep-
resented and only 2.22% of the articles sampled soil
larger than 1 m, though the knowledge of soil carbon
at the depths plays a vital way in accounting soil car-
bon stock (Minasny et al 2013, Wu et al 2017). There
are 116 articles focused on mapping soil carbon con-
centration or content (% or g kg−1), but only 24 art-
icles mapped area-based SOC stock (SOC density).

2.4. Scales, environmental covariates, models
There is a large range of case studies assessing soil
carbon from the plot (<1 km2) to the regional
(>104 km2) scale. The large variation between scales
could be due to various research objectives, e.g. the
impact of environmental covariates (Stevens et al
2014), the effectiveness of the model (Dharumarajan
et al 2017), and the evaluation of SOC losses (Paul
et al 2020b).

Based on the reviewed papers, we summarize the
main drivers of soil carbon, environmental covariates,
andmodels used for digital mapping of soil carbon in
cropland on different scales (figure 5). Identifying the

main drivers of soil carbon on a special scale can not
only improve the accuracy of DSM but also be helpful
to understand how environmental covariates influ-
ence the spatial distribution of soil carbon. As shown
in figure 5, a wealth of environmental covariates for
DSM are available, including topography covariates
derived from digital elevation models (DEMs), par-
entmaterial, climate covariates generated by interpol-
ation of observations from meteorological stations,
remote sensing images of surface reflectance or trans-
mission, and soil properties acquired by on-the-go
sensors. Soil properties, vegetation, and topography
tend to be important drivers of soil carbon from the
plot (<1 km2) to the regional (>104 km2) scale, while
climate, parent material, and anthropogenic influ-
ence appear to be vital factors at larger scales.

Model selection may be one of the core objectives
of DSM.We dividedDSMmodels of the reviewed 144
articles fall into four generic methods: linear statist-
ical methods, geostatistical methods (mainly cokri-
ging (CoK) in this review), machine learning (ML)
methods, and hybrid methods. As we choose the
digital mapping of soil carbon studies which used the
environmental covariates (McBratney et al 2003), kri-
ging methods are only based on sample distances but
do not use environmental covariates (e.g. ordinary
kriging (OK) and simple kriging (SK)) were not con-
sidered in this review. Besides, OK or SK has been
reported not as effective as regression kriging (RK) or
CoK (Mirzaee et al 2016, Wu et al 2021). According
to figure 5, linear statistical methods and ML meth-
ods were themost commonly used algorithms. Linear
statistical methods occurred frequently at a local scale
and plot scale, while they are used frequently in earlier
papers. ML methods are real heated methods that are
dominant on all scales. It concerns the effectiveness
of tackling the complicated relationships among vari-
ous environmental covariates and soil carbon.Hybrid
methods work in a broader range of scales, compared
with linear statistical methods.

3. Models and environmental covariates of
digital mapping of soil carbon in cropland

In this section, we focus on predictive models and
environmental covariates in digital mapping of soil
carbon in cropland to find advanced existing know-
ledge, aiming to highlight where further DSM studies
in cropland can be carried out.

3.1. Models
3.1.1. Linear statistical methods
Linear statistical methods are commonly adopted in
the digital mapping of soil carbon because of their
easiness and wider availability. They form a spe-
cific model between a response variable (Y) and
a set of dependent variables (X) (McBratney et al
2003, Summers et al 2011). Linear statistical meth-
ods included in the section are mainly regression
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Figure 5.Main drivers of soil carbon, environmental covariates, and models used for soil carbon mapping in cropland at different
scales (VI, vegetation indices; NDVI, normalized difference vegetation index; EVI, enhanced vegetation index; RVI: ratio
vegetation index; TWI, terrain wetness index; MAT, mean annual temperature; MAP, mean annual precipitation; SVR, support
vector machines regression; ANN, artificial neural network; BRT, boosted regression tree; RF, random forest; RT, regression tree;
GWR, geographically weighted regression; GWRK, geographically weighted regression kriging; RK, regression kriging; MLR,
multiple linear regression; SLR, stepwise linear regression; PLSR, partial least squares regression). Main drivers: various ‘scropan’
factors were reported to govern the variability of soil carbon on different scales; environmental covariates: the specific covariates
occurred frequently on different scales, based on the reviewed papers. Models: the choice of mapping models on different scales.

models using ordinary and generalized least squares.
In particular, the two most commonmodels are mul-
tiple linear regression (MLR) and partial least squares
regression (PLSR).

MLR assumes a linear relationship between soil
carbon and its environmental variables (Hounkpatin
et al 2018). Currently, MLR has come up most fre-
quently in the context of comparing the predictive
efficiency of various algorithms for mapping car-
bon. For example, Khanal et al (2018) used five
ML algorithms (random forest (RF), neural network
(NN), support vectormachine (SVM)with radial and
linear kernel functions, gradient boosting model, and
cubist) and took MLR for comparison for prediction
of soil organic matter (SOM) (%). Zeraatpisheh et al
(2019) gave an example for using non-linear mod-
els (RF, cubist, and regression tree (RT)) in mapping
SOC content combined with topographic covariates

and remote sensing covariates, whileMLRwas chosen
as the compared method.

Data from several studies suggest that MLR may
be decent when the number of multispectral satel-
lite imagery is limited, while PLSR can handle a large
number of highly correlated spectral bands (Vaudour
et al 2013, 2016). PLSR projects predictors (X vari-
ables) onto a low-dimensional space and finds a
small number of latent variables that explain the
covariance between X and Y (Stevens et al 2010,
Summers et al 2011, Kuang et al 2015). As a res-
ult, PLSR can create the relationships between the
input covariates and soil carbon in addition to avoid-
ing the multicollinearity problem among the input
covariates (Guo et al 2021a). PLSR was chosen to
test the suitability of airborne hyperspectral ima-
ging in the detection of SOC content variability at
a small scale (Hbirkou et al 2012). Based on PLSR,
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Figure 6. The number of predict models from 2005 to 2021. Note that many articles compared the model performance using
several types of models, thus the sum of all the counts is far more than the total number of papers.

Guo et al (2019) and Kodaira and Shibusawa (2013)
investigated the capability of bare soil spectra to map
the topsoil SOM content in cropland. Study such as
those conducted by Bartholomeus et al (2011) has
shown that the PLSR-based prediction of SOC con-
tent is sensitive to vegetation influence when explor-
ing to filter away the influence of maize from the
mixed spectra.

There has been a significant shift from linear stat-
istical methods to ML methods for mapping soil car-
bon in the last 20 years (figure 6). One reason is
that linear statistical methods can suffer the prob-
lem of collinearity among variables. Moreover, the
linear statistical methods may not satisfy the com-
plex soil-environment relationships. Linear statistical
methods occur frequently when environmental cov-
ariates consist of the electromagnetic spectra or near-
and mid-infrared bands due to the inherent ability to
handlemany spectral data with co-linearity (Debaene
et al 2014, Kuang et al 2015, Wetterlind et al 2015,
Priori et al 2016), otherwise, linear statistical meth-
ods are frequently used as a benchmark upon which
the performance of other models could be assessed
(Lamichhane et al 2019).

3.1.2. Geostatistical methods
Geostatistical methods are effective in quantifying
and model the spatial variation of the variable of
interests assuming that samples close together, on
average, are valued more similarly than those that
are farther apart (Wu et al 2021), and have been
widely applied in mapping of soil properties (Lopez-
Granados et al 2005, Minasny and McBratney 2016).
Nevertheless, these methods require fairly dense
points data to obtain reliable semivariograms, and
the relative importance of the different drivers of soil
carbon dynamics is hardly reflected in geostatistical

methods (Lacoste et al 2014). In the review, we only
focus on the geostatistical algorithms that incorpor-
ate environmental covariates into the kriging system.
CoK is an extension of OK that employs one or more
covariables (Z2) in the estimation at unsampled loca-
tions by considering the correlationswith the primary
variable (Z1) (Wu et al 2009). The semivariogram and
cross-semivariogram of all Z1 and Z2 can be com-
puted and modeled as a linear model of coregional-
ization (Simbahan et al 2006). Numerous examples
of CoK applications can be found in DSM (Simbahan
et al 2006, Mirzaee et al 2016, Dong et al 2019). Wu
et al (2009) found that CoK with remote sensing data
showed better performance than kriging when facing
limited available soil samples. The results of these
studies indicated that geostatistical models coupled
with environmental covariates can be helpful in map-
ping soil carbon.

3.1.3. ML methods
ML methods do not require rigorous statistical
assumptions about the distribution of input data,
compared with geostatistical models (Lacoste et al
2014). They could effectively work with the non-
linear and complex relationship between soil carbon
and environmental covariates known as ‘SCORPAN’
factors (McBratney et al 2003, Lacoste et al 2014,
Khanal et al 2018). The article defines ML methods
as a large class of methods using data mining to learn
a pattern and then perform regression or classifica-
tion tasks (Wadoux et al 2020). The more frequently
usedmodels identified in this review name cubist, RF,
SVM, and artificial neural network (ANN).

Cubist is different from the conventional type
of RTs in that the prediction values are based on
linear regressions instead of discrete values, thus
leading to small trees and good prediction accuracy
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(Minasny and McBratney 2008, Taghizadeh-
Mehrjardi et al 2016). The advantage of cubist is that it
allows an easy interpretation of the predictive models
by producing the learning rules and the importance
of the covariates between soil properties and its envir-
onment (Lacoste et al 2014). Moreover, Lacoste et al
(2014) applied cubist to output the importance of
the covariates on explaining the distribution of SOC
content/stock at the landscape scale. Zeraatpisheh
et al (2021) delivered a great potential in using cubist
for mapping SOC content. Zeraatpisheh et al (2019)
concluded that cubist showed superiority in predict-
ing SOC content among other methods (i.e. RT and
MLR) in the semi-arid region.

RF is an ensemble of randomized RTs that are
aggregated to give a single prediction (Taghizadeh-
Mehrjardi et al 2016, Pahlavan-Rad et al 2018).
RF is robust against overfitting and can work out
large datasets and superior predictive performance
over many other models (Dharumarajan et al 2017,
Hounkpatin et al 2018). An empirical example is by
Hounkpatin et al (2018), who find RF performed bet-
ter than the MLR due to the RF’s advantage in hand-
ling nonlinear patterns in datasets. Dong et al (2019)
indicated that the RF model performed better than
OK, CoK, and ANN models for predicting topsoil
SOC content, especially when sample data are limited.
What’s more, Guo et al (2021a) and Yang et al (2019)
discussed the application of the RF model for pre-
dicting topsoil SOC content in an intensively cultiv-
ated region of China. In a watershed, RF shows lower
uncertainty compared to the cubist model with not
dense sampling density (Fathololoumi et al 2020). RF
is now widely used in predicting soil attributes and
seems to work well with diverse landscape features
and limited sample size.

Support vectormachines regression (SVR) imple-
ments linear/non-linear regression functions in a
multi-dimensional feature space, thus it can solve the
problem of nonlinear discrimination (Aldana-Jague
et al 2016, Taghizadeh-Mehrjardi et al 2016). One
of the great advantages of SVR is that it can deal
with noise from high-dimensional data, therefore it
is always selected to solve the multivariate calibration
problem (Stevens et al 2010, 2012). However, select-
ing the right kernel and SVR parameters can require
a lot of computing work or experience. Suleymanov
et al (2021) applied SVR to map the SOC content in
the arable lands of Trans-Ural steppe zone with 17
topographic indices. In the study, SVR is the more
accurate method in predicting the spatial variation
of SOC content with comparison to MLR. Xu et al
(2020) concluded that SVR was suitable for the high-
resolution mapping of SOC content based on labor-
atory hyperspectral imaging spectroscopy, which is
aligned with the results of Aldana-Jague et al (2016).

ANNs are notable for their ability to efficiently
manage and modify a large amount of data from a
variety of sources with varying levels of noise and

precision, as well as their generalization capability
(Sindayihebura et al 2017, Kalambukattu et al 2018,
Nabiollahi et al 2018). Kuang et al (2015) recom-
mended ANN for spectral calibration and prediction,
because it can overcome the non-linear behavior doc-
umented for SOC content. Other examples include
Kalambukattu et al (2018) and Taghizadeh-Mehrjardi
et al (2016), who used ANN to map SOC content
on local and regional scale, respectively. However, it
is excessively time consuming, inefficient at hand-
ling mixed types of data, and susceptible to missing
data and outliers (Lek and Guegan 1999). Dong et al
(2019) used ANN based on multi-layer perceptron to
predict SOC content, while ANN performed worst
in four models (the other three are OK, CoK, and
RF). This result may be caused by the ANN model’s
greater propensity for overfitting when sample data
are scarce. However, in the context of big data min-
ing, ANNs are still remarkable in DSM.

3.1.4. Hybrid methods
The hybrid methods are defined as the summation of
at least two different algorithms, such as RK, random
forest plus residuals kriging (RFRK), andRF plus geo-
graphically weighted regression. Generally speaking,
such algorithms achieve better predictive perform-
ance than simple geostatistical algorithms or linear
statistical methods (Bilgili et al 2011, Mirzaee et al
2016).

As one of the commonhybridmethods, RK incor-
porates environmental covariates into the kriging
models by combining regression between the primary
(target) variable and secondary variable(s) using kri-
ging residuals derived from the regression (Bilgili et al
2011, Piccini et al 2014). Simbahan et al (2006) advoc-
ated employing using independently measured, mul-
tivariate secondary information in RK approaches for
mapping of SOC stock. Minasny et al (2009) used RK
to demonstrate the application of near-infrared dif-
fuse reflectance spectroscopy measurements in DSM.
Wu et al (2020) evaluated the performance of RK
combined with cropping systems and natural covari-
ates. Even though RK has been confirmed to have the
advantages of easy implementation, detailed results,
and good prediction accuracy, its validity is strongly
reliant on the selection of environmental covariates
(Wu et al 2019).

Recently, some studies have focused on hybrid
geostatistical procedures, mostly in the form of a
combination of geostatistics and ML methods. For
example, Mirzaee et al (2016) conducted ANN-OK
and ANN-SK for the spatial variability of SOM con-
tent using remote sensing data. The result showed
the hybrid geostatistical methods provided more reli-
able predictions than the simple geostatistical meth-
ods including SK, OK, and CoK. Dai et al (2014)
concluded that ANN-kriging (ANNK) was particu-
larly effective in improving the accuracy of SOM con-
tent mapping compared with universal kriging, and
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inverse distance weighting at a large scale. This is
mainly because the type of methods uses both envir-
onmental and spatially auto-correlated information
based on residual estimation by kriging (Mirzaee et al
2016). Nevertheless, some studies found that kriging
achieved a better performance than the hybrid geo-
statistical methods because the sample density could
influence the involvement of environmental covari-
ates (Li 2010, Pouladi et al 2019). Thus there is a need
to estimate the correlation between environmental
covariates and target property when using the inter-
polation methods by hybrid geostatistical methods
such as RK and ANNK (Mirzaee et al 2016).

3.1.5. Other methods
Some other innovative methods that do not fall into
the above categories for soil mapping have been pro-
posed. Soil type-specific depth functions were intro-
duced by Kempen et al (2011). This approach uses
general pedological knowledge for defining depth
function structures with geostatistical modeling then
allows the construction of the depth function of
SOM content for each soil type at each prediction
site (Kempen et al 2011). However, the methodo-
logy requires a large number of existing soil datasets,
which may be not applicable in areas with limited
samples. Zhu et al (2015) presented a new method
named ‘individual predictive soil mapping’, which
can make good use of a limited quantity of soil
samples based on their representativeness. Assum-
ing similar soil attribute characteristics under sim-
ilar environmental conditions, this method calculates
similarities between environmental covariates of the
unvisited points and the sampling points, then uses
a similarity weighted average method to calculate the
target attributes of the whole area (Zhu et al 2015).

3.1.6. Summary of soil mapping models
As the above study results show, no model is found
to have consistently superior performance. Currently,
many studies show that ML methods seem to be
more efficient in incorporating non-linear correla-
tions between soil carbon and environmental covari-
ates duringmodel construction, thus performing bet-
ter than the linear statistical methods (Khanal et al
2018, Xu et al 2020). Bou Kheir et al (2010) poin-
ted out that ML methods could satisfy the demands
of indicating the relative importance of each environ-
mental covariate and moderate requirements on the
number of sampling points. Nevertheless, ML meth-
ods are data-driven and the quantity and represent-
ativeness of the input training observations determ-
ine the prediction results to a great extent. In some
cases, MLmethods could even give worse results than
simple models in some cases. In a spatial downscaling
study, Roudier et al (2017) pointed out that simpler
methods such as linear statistical methods or general
additive model outperformed RF and cubist to cap-
ture the important variations when facing a limited

number of training samples. What’s more, the per-
formance of the same model is different in different
soil depths. In the study of four standardized depths
(0–15, 15–30, 30–60, and 60–100 cm), Taghizadeh-
Mehrjardi et al (2016) indicated that the perform-
ance of predictive models were decreased with depth.
The best performance of SVR in predicting SOC con-
tent was obtained in the 0–15 cm depth of soil pro-
files, while the lowest accuracy of estimation is for
the 60–100 cm depth interval with far greater root
mean square errors (RMSEs) than the first two layers
(0–30 cm of soil profiles).

Different predictive models might suit different
sets of environmental covariates and target soil prop-
erties (Beguin et al 2017, Zhou et al 2020). According
to certain studies, the correlation strength of the tar-
get variable with environmental covariates can be a
critical measure in determining whichmodels to util-
ize a priori (Hengl et al 2004, Taghizadeh-Mehrjardi
et al 2016, Hounkpatin et al 2018). Also, some pre-
dictive models are only capable of predicting while
others can also provide soil-environment relation-
ships (Roudier et al 2017). Some studies demonstrate
that RFRK obtains promising performance in mod-
eling complex relationships among variables, while
generalized additive mixed model and RT are con-
ducive to interpreting relationships among variables
(Hamberg et al 2008, Kelly et al 2013, Guo et al
2015). Therefore, multiple complementary methods
used make it possible to get better predictions than
using these models individually.

3.2. Environmental covariates
Environmental covariates are used as predictors in
the digital mapping of soil carbon, which are sup-
posed to represent the environmental conditions gov-
erning the level of soil carbon. Thus, it is import-
ant to identify the contribution of these covariates for
mapping soil carbon so that the selection of relevant
environmental covariates can be guided. The review
divides all environmental covariates into two main
categories. One is natural environmental covariates,
the other is anthropogenic covariates. The most com-
mon natural covariates are annual average temper-
ature and precipitation, topography attributes (e.g.
slope, aspect, terrain wetness index (TWI)), geologic-
al/soil parent materials maps, and previously meas-
ured soil attributes or class maps. The most com-
mon anthropogenic covariates include crop inform-
ation (e.g. crop type, vegetation indices (VI) derived
from satellite images) and agricultural management
(e.g. irrigation, fertilizer). In this review, the time
factor is not as a separate section like other common
covariates. Soil carbon dynamics is a time-dependent
process (Bolinder et al 2020), while it is difficult
to get appropriate factors to measure the influence
of ‘time’. To express the role of ‘time’, some stud-
ies used the long-term climatic covariates (Schillaci
et al 2017) or VI (Yang et al 2021), cultivation history
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(Wang et al 2019), or legacy soil maps (Costa et al
2018). It seems the role of ‘time’ is reflected in these
accessible covariates.

3.2.1. Natural environmental covariates
3.2.1.1. Climate covariates
Climate is a pivotal force affecting plant type, crop
growth, and soil conditions, thus impacting car-
bon input and litter decomposition (Wiesmeier et al
2019). A higher SOC concentration is frequently
seen in places with high rainfall and low temper-
atures, which encourage the accumulation of car-
bon and nitrogen in soils (Hounkpatin et al 2018).
High precipitation is typically correlated with abund-
ant growth and high rates of carbon inputs to soils,
whereas low temperatures may noticeably slow down
the microbial decomposition of organic matter (Bai
et al 2019). What’s more, the crop species selected
for regional agriculture are usually recommended by
regional climatic characteristics.

The (long term) annual average temperature and
average annual precipitation are the climatic covari-
ates commonly used in mapping soil carbon (Zeng
et al 2016, Wang et al 2017). Li et al (2020a)
stated the annual average temperature was the most
important explanatory variable for predicting SOC
content in black soil area of northeastern China.
Moreover, other climatic covariates, such as maxim-
um/minimum temperature (Tayebi et al 2021), max-
imum/minimum precipitation (Sreenivas et al 2016),
and moisture index (Dong et al 2019) have also been
found to be powerful in explaining the variability of
soil carbon. Some studies have shown that climate
changes will affect gross productivity, the decompos-
ition of microorganisms (Piao et al 2013, Anderson
et al 2020). In turn, changes in the carbon-cycle can
affect climate on a variety of scales (van Meij et al
2018, Messori et al 2019). The relationship between
climate covariates and organicmatter becomes highly
complex in the context of global warming.

Climatic conditions may be the main drivers of
soil carbon on larger scales, such as regional and
continental scales. However, at a small scale, some-
times, it is not always an effective covariate. Dong et al
(2019) found annual average precipitation ranked
lowest among the ten environmental covariates in the
study of arid agricultural plain (509.17 km2). Paul
et al (2020b) found climate variables performed less
well than other environmental covariates (VI, topo-
graphic covariates, and soil covariates) for predicting
SOC content in a study area of 120 km2. This trend
might be explained by the cultivation always in low-
elevation plains or hillocks where the land is relatively
flat. On small scale, climate effects may be masked in
topsoil by land use/management, particularly in cro-
pland soils, where climate effects may be mediated by
intensive management (fertilization, irrigation, etc)
(Dong et al 2019, Paul et al 2020b). This shows other
environmental covariates than climate covariatesmay

play a more important role in SOC decomposition
and forming of soil carbon at a small scale.

3.2.1.2. Parent materials
Parent material is formed based on bedrock, which is
the basis of the physical and chemical properties of the
soil (Zhang et al 2020). For example, the soils, derived
from carbonate rocks in Southwest China, are rich
in calcium (Tu et al 2018). As the original material
sources, parent materials is related to soil proper-
ties such as soil texture, pH, and clay mineralogy,
subsequently affecting other soil characteristics,
including SOC content and the soil’s potential to store
carbon (Ingram and Fernandes 2001). However, the
parent material is not often available in many areas,
and is commonly generated from geological maps
of different scales, such as 1:500 000 geological maps
in China (Zeng et al 2016) and 1:25 000 National
Geological Map of Denmark (Bou Kheir et al 2010).

Studies have employed parent material in pre-
dicting SOC content variability from regional to plot
scales. Dong et al (2019) pointed out that soil par-
ent material was a vital factor influencing SOC con-
tent at a regional scale. The finding was in line with
the results of Bou Kheir et al (2010), who reported
parent material as a major factor affecting SOC con-
tent in the 5748 km2 area mainly farmed with cer-
eals. Kumar (2015) concluded parent material could
significantly increase the prediction accuracy of the
SOC density in the study of the Midwestern region of
the United States. However, the prediction ability of
the categorical parent materials variable is limited in
a 15 km2 study area mainly due to its small variabil-
ity (Sindayihebura et al 2017). Similarly, a study cov-
ering an area of 10 km2, found that geological data
was a less significant factor in predicting SOC stocks
(Lacoste et al 2014). Overall, selecting parent material
as a predictor seems to be a wise choice on a regional
scale, whereas is needed to weigh the options at local
and plot scales.

3.2.1.3. Topography covariates
Topography condition determines soil particle move-
ment, thus affecting the distributions of soil carbon
content. Topographic covariates are generally extrac-
ted from existing DEM including slope, elevation,
aspect, TWI, plane curvature, and profile curvature
(Lacoste et al 2014). Specifically, slope affects soil
erosion, drainage, and runoff, while TWI reflects the
state of soil water, therefore they both played import-
ant roles in the spatial patterns of SOC contents in dry
farmed cropland (Tu et al 2018).

Topographic covariates have been widely adop-
ted in digital mapping of soil carbon and acknow-
ledged as an influential factor, especially at water-
shed scales. Zhou et al (2020) considered topography
as one of the main factors affecting soil moisture-
temperature conditions, and it proved to be the main
explanatory variable for SOC content prediction at
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coastal agroecosystems. Bonfatti et al (2016) found
that for soils below 30 cm depth, aspect was one of
the important factors for predicting SOC content.
For wet cultivated lands in the study of Bou Kheir
et al (2010), topographic covariates such as elevation
and plan curvature contribute more to the predic-
tion of the spatial distribution of SOC content than
other factors such as normalized difference vegeta-
tion index (NDVI), soil color, and flow accumula-
tion. Similar results were reported in other studies
(Wang et al 2018, Hu et al 2021, Zeraatpisheh et al
2021), which illustrated the important role of topo-
graphy in the digital mapping of soil carbon. In the
alluvial plains of Ningxia province, China, elevation
is only one factor that significantly affects the distri-
bution of SOC content among ten topographic cov-
ariates, which might cause by the flat land in agri-
culture area (Dong et al 2019). High altitude regions
typically have lower temperatures, which may partly
explain the accumulation of SOC (Tu et al 2018).
Nevertheless, the elevationwas also a proxy for depos-
ited material and high SOC stocks were located in
lower elevation areas with deeper soils (Zeraatpisheh
et al 2019). The relative importance of elevation var-
ies widely for different agricultural area due to their
specific landforms and climate conditions.

These studies demonstrate that topography cov-
ariates are strong predictors for predicting soil car-
bon at different scales, extents, and depths. Yet, the
topographic covariates may be not effective in relat-
ively flat areas because they may be too homogenous
to reflect soil conditions well in gentle terrain, usually
in cropland (Wu et al 2020, He et al 2021).

3.2.1.4. Soil covariates
Soil properties such as pH, clay content, soil mois-
ture content, and bulk density affect the accumula-
tion and decomposition of soil carbon (Wu et al 2020,
Naspendra et al 2021). Soil pH may influence the
SOC turnover rate through its effect onmicrobial spe-
cies and diversity, which is a comprehensive indic-
ator of the physico-chemical characteristics of the soil.
Fine-textured soils tend to have more organic matter
(Bai et al 2019). And the reason for this is twofold:
clay plays a significant part in stabilizing carbon by
adsorption and aggregation; clay-textured soils have
greater water retention capacity and affect plant yield
(Jackson et al 2017, Fan et al 2020). Therefore, exist-
ing soil property data or maps of an area have been
used as predictors for soil mapping (McBratney et al
2003). In addition, different soil types have different
soil properties, thus existing soil type maps are also
widely used in soil mapping.

Soil properties, such as soil bulk density, tex-
ture, pH, have been reported to be influencing factors
in determining the level of SOC. Deng et al (2020)
used soil bulk density to map soil carbon/nitro-
gen (C/N) ratio based on 29 927 topsoils (0–20 cm)
samples, and found played a crucial role in soil

mapping. Soil sand content showed a negative cor-
relation with SOC content variation, whereas soil
silt content appeared a positive relationship at depth
of 0–30 cm (Hamzehpour et al 2019). Examples of
studies using soil texture for mapping soil carbon
are Schillaci et al (2017), Meersmans et al (2008),
and Stevens et al (2015). Zhang et al (2017b) indic-
ated that the soil pH was the most important vari-
able impacting SOC content, followed by silt con-
tents. However, some studies noted that the explanat-
ory power of soil properties on a local scale was lim-
ited, which may be due to the influence of long-term
cultivation and relatively rough resolution (Wu et al
2020).

In addition to the soil property sample data, a
growing number of studies have advocated the effect-
iveness of existing soil information as covariates in
the digital mapping of soil carbon. For example, Paul
et al (2020b) utilized a 30 m grid to extract soil sand,
silt, clay, and cation exchange capacity from the exist-
ing detailed Canadian soil survey, and the historic soil
property variables were the strongest predictors for
predicting SOC content. Dong et al (2019) obtained
five soil properties (bulk density, clay content, silt
content, sand content, and coarse fragments volumet-
ric) from the SoilGrid 250 m dataset (Hengl et al
2014) to map SOC content on an alluvial-diluvian
plain. Bou Kheir et al (2010), Costa et al (2018), and
Wu et al (2019) selected the legacy soil class map as
a covariate. These studies indicated that the existing
soil layers should be a valuable source of information
to build soil mapping models.

3.2.2. Anthropogenic covariates
Covariates indicating cropping system and agricul-
tural management in digital mapping of soil carbon
have attracted increasing attention recently (Han et al
2018, Zhou et al 2019, Zhang et al 2020).

Developments in remote sensing, geographic
information systems (GIS), and mobile technologies
combined with field investigation data are providing
available ways to capture information on crop growth
and agricultural management practices. There is
immense potential in using agricultural information
as predictors in the digital mapping of soil carbon,
and the application of this kind of variable is gradually
emerging. Some studies even point out that the results
of the evaluation of soil carbon in crop areas are inac-
curate without considering agricultural information
(Simbahan et al 2006, Bell and Worrall 2009, Nawar
et al 2015).

3.2.2.1. Crop information
Crop species and cropping rotations influence soil
carbon dynamics due to the strong interactions
between SOC pool and vegetation (Lal 2011). The use
of cropping patterns and various VI is of great con-
cern in the digital mapping of soil carbon (Araya et al
2016, Yang et al 2019).
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3.2.2.1.1. Cropping patterns
Cropping patterns include planting crop species, area,
and spatial layout of crops. Crop species, usually a
result of farmers’ decisions according to climate zone
and market or policy, are highly related to soil car-
bon content (Wu et al 2021). Because crop residues of
different species influence soil carbon input and crop
roots are related to microbial activities. The addition
of fresh organic amendment into the soil is known as
soil priming (Kuzyakov et al 2000). The soil priming
usually causes carbon dynamics (Mandal et al 2020).
Based on the National Cropland Data Layer of the
National Agricultural Statistics Service, Flathers and
Gessler (2018) extracted five crop species to develop
a SOC content map of major cereal crop-growing
regions in the northwestern United States. Moreover,
a shift of crop species and the corresponding cropping
system usually results in changes in soil carbon. For
example, the SOC content increased under a change
from a dry field to a paddy field (Huang et al 2007a).

In addition to crop species, cropping rotation
mode, the sequence of crop species planted in a
year is another variables influencing the soil carbon
dynamics (Wu et al 2021). Hu et al (2021) revealed
that soils with a double-cropping system had the
highest of SOM content compared with a single crop-
ping system. Song et al (2017) generated a map of
crop rotation types based on remote sensing data,
and showed that using the crop rotation type vari-
able increased the SOM content prediction accur-
acy more than NDVI or land use. Yang et al (2019,
2020) used the crop rotation information obtained
through field investigation in a largely agricultural
area, and showed the effectiveness of incorporating
such information in SOC content prediction. Ellili
et al (2019) concluded that crop rotation accounts for
20% stock of SOC change variability in eastern Brit-
tany of France with a 10 km2 area. Additionally, Wu
et al (2019, 2021) employed crop rotation inmapping
SOC density in plains.

3.2.2.1.2. VI of crops
VI indicate vegetation growth status, which are
obtained based on multispectral or hyperspectral
remote sensing bands. VI are easily-obtained, and
thus have provided an available way to monitor inter-
annual variations and long-term trends in vegetated
land surface characteristics. Due to the strong rela-
tionships between soil and vegetation, VI have been
used as predictors in mapping SOC content or stock
for a long time (Simbahan et al 2006, Rizzo et al 2016,
Fathololoumi et al 2020, Li et al 2020a).

Several VI have been developed using differ-
ent algorithms to describe plant characteristics.
NDVI, one of the commonest VI, has been widely
used. Multi-year average NDVI, as well as remote
sensing imagery in several growing seasons, are
mostly adopted. Commonly used NDVI products
are MODIS NDVI data (Guo et al 2015), Landsat

TM data (Guo et al 2015), and Landsat ETM+ data
(Sindayihebura et al 2017). Other VI (table 1), such
as enhanced vegetation index (EVI) (Zeng et al
2016), soil adjusted vegetation index (Nabiollahi
et al 2018), and ratio vegetation index (Zeraatpisheh
et al 2019), have also been widely used as explan-
atory covariates in the predictive mapping of soil
carbon. Kalambukattu et al (2018) discovered bright-
ness index, coloration index, hue index, and satura-
tion index were directly proportional to the amount
of SOC content in a study area in the northwestern
Himalayas and obtained an accuracy of 0.62 (R2) with
the above multiple VI and topographic covariates.
Meanwhile, there are also studies using net primary
productivity (NPP) to predict SOC stocks distribu-
tion (Martin et al 2011). This is mainly because NPP
has a great relationship with vegetation type, thus it
can indicate the amount of litterfall.

Compared with monotemporal VI, it was repor-
ted that time-series VI data capturing the spatial-
temporal change of crop growth could be better pre-
dictors for digital mapping of soil carbon. Time-
series VI can be regarded as more effective inform-
ation to capture the long-term growth status of the
crop (Zeng et al 2020b), furthermore, the VI vary
in different years on account of crop patterns (Guo
et al 2021b). In low relief cropland regions, Guo et al
(2020) provide the feasibility of a short period (about
five months) of multi-temporal images in mapping
SOC stocks. Tayebi et al (2021) used 30 year time-
series average VI (NDVI, EVI, normalized difference
water index) to map SOC stocks and obtained prom-
inent prediction results. These studies give us insight-
ful inspiration on the application of time-series VI
in digital mapping of soil carbon, which can be
regarded to overcome the limitation of single images
in cropland.

Now, innovative environmental covariates extrac-
ted based on time-series VI has been recently
developed in the digital mapping of soil carbon (Zeng
et al 2020b). Yang et al (2019) stated the time-series
NDVI derived through Fourier transform resembled
different periodic characteristics of crop rotation,
thus the Fourier decomposed variables improved
the accuracy of digital mapping of soil carbon at
a regional scale. In addition, remote sensing-based
phenological parameters, that describe the beginning
and end time of the growing season, the length of
the growing season, the initial growth rate, the with-
ering rate, and other characteristics (Brown et al
2012), have been applied as a new type of envir-
onmental covariate in digital mapping of soil car-
bon. For example, Yang et al (2020) used 11 pheno-
logical parameters extracted from time-series NDVI
in two growing seasons of a year, and suggested that
the phenological parameters effectively indicated the
spatial variability of SOC content in the region. He
et al (2021) extracted 17 phenological parameters
from 34 Sentinel-2 time-series images from 2018 to
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2019 to predict SOC content in Anhui Xuancheng,
China. Yang et al (2021) obtained ten-year phenology
variables for mapping SOC content with a convolu-
tional NN model, and showed that the time-series
phenology variables were more effective predictors in
improving accuracy than NDVI.

Taken together, these results show great promise
of remote sensing techniques for providing valuable
information on vegetation types and their growth
status. Compared with traditional natural environ-
mental variables, remote-sensing-derived predictors
require less cost of acquiring data, thus representing a
promising tool in the cropland’s soil mapping. How-
ever, we need to tackle the influence of weather condi-
tions and the return period of satellites when collect-
ing images. Moreover, topography and climate may
influence the efficacy of VI variables because the dis-
tribution of vegetation was bound up to topography
and climate (Wang et al 2018, 2021b).

3.2.2.2. Agricultural management
Agricultural management including irrigation, fer-
tilization, and straw returning has a major effect
on the quantity and quality of fresh organic mat-
ter inputs into the soil and influences the organic
carbon decomposing (Simbahan et al 2006, Ellili
et al 2019, Luo et al 2019). Specifically, fertiliza-
tion directly changes the soil structure and the level
of SOC stock (Han et al 2018). Meanwhile, it pro-
motes the growth of crops, thereby increasing the
input of organic matter and contributing to accumu-
lation in both topsoil and subsoil (Dendoncker et al
2004, Huang et al 2007a). Straw returning increases
soil carbon input (Huang et al 2007a), improves soil
structure and nutrient availability, and increases soil
microbial population size (Li et al 2020b). No-tillage
slows down soil carbon emissions and increases soil
water retention capacity, which in turn increases SOC
stock (Abdalla et al 2016, Li et al 2019, 2020b). The
irrigation and drainage system play an important role
in the regulation of soil moisture, which will affect
the activities of microbial communities and then the
decomposition rate of SOM density (Trost et al 2013,
Sreenivas et al 2016).

Much recent literature has attempted to use irrig-
ation information in the digital mapping of soil car-
bon. Sreenivas et al (2016) extracted the irrigation
status from the irrigation atlas by Water Resources
Information System project. However, most of the
study areas do not have available irrigation maps.
Cropland generally has well-developed irrigation sys-
tems, so the distance from the main channels or
water sources is amore available variable representing
the irrigation information. For example, Zeng et al
(2016) used the distance from the nearest drainage
system and the height of the closest drainage sys-
tem as environmental covariates in gentle cropland
and proved that these covariates played an import-
ant role in the distribution of SOM concentration.

Dong et al (2019) calculated the distance to rivers and
used it to map SOC content in an alluvial-diluvial
plain in China, and an irrigation class map with three
classes (well-irrigated, moderately well-irrigated, and
poorly irrigated) distinguished by local experts was
also employed. The distance to rivers and the irrig-
ation class map were the most important among
the ten covariates (Dong et al 2019). Cambule et al
(2013) analyzed the spatial characteristics of NDVI
during the dry and wet seasons and found that NDVI
along the drainage system lines was higher than in
other places in the dry season. According to the above
studies, the irrigation information would be a useful
exploration especially for regions highly depending
on irrigation, such as in arid or semi-arid areas.

Fertilizer information has been used to improve
the accuracy of predicting soil carbon. For example,
Deng et al (2018) obtained the county-level nitrogen-
fertilizer application rates, which proved to be able
to explain a part of SOC stock variation in Zheji-
ang province (∼102 646 km2) in East China. Fur-
thermore, they emphasized the importance of the
nitrogen-fertilizer application rate in mapping the
C/N ratio (Deng et al 2020). Meersmans et al (2012)
obtained Manure application and animal excrement
production statistics (t ha yr−1) at departmental
level from French Environment and Energy Manage-
ment Agency. The relation between SOC content and
manure was not clearly identified due to the coarse
spatial scale of manure data. Yet, it is ambitious to
obtain detailed spatial fertilizer information because
fertilizationmode appears personal. The county-level
fertilization information obtained through the statist-
ical yearbook can be a reasonable variable for regional
studies but may be not informative at local scales.

The historical agricultural management informa-
tion representing the impact of human activities on
agricultural ecosystems on a long-time scale attracts
attention. A study on an estate in theUnited Kingdom
suggested that farm tenancy was a better predictor
of mapping SOC concentrations than soil series or
land use (Bell and Worrall 2009). The length of cul-
tivation for the past 300 years in Northeast China
has been proved to improve the prediction accuracy
of SOC content (Wang et al 2019). In Kravchenko
and Robertson (2007), the dense long-term yield data
obtained via yield monitoring from plots improved
the total carbon mapping accuracy. Those studies
show that it is an attractive attempt to introduce his-
torical information (such as planting length, planting
policy, yield information) into the digital mapping of
soil carbon.

Although recent studies have proved the effect-
iveness of agricultural management information, it
remains difficult to obtain detailed information on
the spatial distribution of agricultural practices. The
subjectivity of determination of agricultural prac-
tices by farmers makes it hard to obtain the agricul-
tural management information with a detailed spatial
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resolution (Han et al 2018, Luo et al 2019). This
unfortunate reality can be a barrier to involving agri-
cultural management in the digital mapping of soil
carbon, which thus needs a coordinated effort to
expand these capabilities.

3.2.3. Soil information based on proximal and remote
soil sensing
Spectral signatures of soil are defined by their reflect-
ance or absorbance, as a function of wavelength in
the electromagnetic spectrum (Brown et al 2006,
Ladoni et al 2010). The visible and near-infrared
(VNIR: 400–1100nm) and shortwave infrared (1100–
2500 nm) bands of the electromagnetic spectrum
have proven to be highly related to various compon-
ents of organic materials when the area is bare, dry,
and flat (Simbahan et al 2006, Hbirkou et al 2012,
Debaene et al 2014). Soil spectra usually are meas-
ured in laboratory conditions, in-situ conditions by
portable spectrometers (e.g. a sensor is mounted on a
tractor and its position recorded by a global position
system receiver) (Chen et al 2000, Fox and Sabbagh
2002, Martin et al 2002, Lopez-Granados et al 2005,
Bricklemyer and Brown 2010), or remotely-sensed
aerial photographs (e.g. the sensor records the surface
aboard a plane or satellite) (Stevens et al 2010, Bilgili
et al 2011, Stevens et al 2012, Kodaira and Shibusawa
2013). Proximal and remote soil sensing are believed
to be a cheaper way to obtain the spatial distribu-
tion characteristics of soil compared with conven-
tional laboratory analysis (Minasny et al 2009,Miklos
et al 2010). Moreover, an intriguing is fact that, by
adopting this method, there can be enough soil data
to allowmeaningful (geo)statistical analyses to obtain
a reliable assessment of soil carbon on the field.

Proximal soil sensing is defined as in-situ, mobile
(on-the-go), field based-sensors for sensing soil
information promptly (Minasny and McBratney
2016). Proximal soil sensing has been generally
applied over different regions and yields comparable
results to traditional analytical techniques (Stevens
et al 2010, Hbirkou et al 2012). Huang et al (2007b)
used on-the-go near-infrared spectroscopy measure-
ments in a 50 ha agricultural field and concluded
that the measurements are valuable tools for accurate
total carbon content mapping. Recently, gamma-ray
spectrometry and radar sensors have also been used
(Flynn et al 2019, Piikki and Söderström 2019, Zhang
et al 2020).

Remote soil sensing provided an important data
source for the spectra of soil carbon, especially for
bare soil. The different sensor types can usually be
mounted on either airborne systems (Laamrani et al
2019, Guo et al 2021b) or as well as satellite plat-
forms (Safanelli et al 2021). Vaudour et al (2021) used
Sentinel-2 time series over several years to obtain soil
composites in a heterogeneous, temperate environ-
ment, and concluded that Sentinel-2was very encour-
aging for further studies about maximizing bare soil

areas in cropland. On a field scale, Hong et al (2020)
demonstrated that the airborne hyperspectral image
could be served as a valuable predictor to map agri-
cultural topsoil SOC content.

Although we can get more soil spectral data from
proximal or remote sensing, soil spectroscopy is lim-
ited in areas with large vegetation cover. To address
this issue, various spectral unmixing techniques have
been proposed for segregating bare soils from veget-
ation cover. Bartholomeus et al (2011) applied a
method named Residual Spectral Unmixing within
fields were partially covered with maize. Recently,
a myriad of studies used multi-temporal images to
maximize the bare soil coverage thus providing the
ability to more accurately map soil spectra (Luo et al
2022). Diek et al (2017) used a dense time series of
Landsat images to detect the least-vegetated area over
the Swiss Plateau. Roberts et al (2019) provided the
first continental-scale mosaic of Australia at its barest
state based on the petabyte-scale of Landsat datasets.
Vaudour et al (2021) highlighted the capability of
multi-date Sentinel-2 images to composite bare soil
images for predicting SOC content over cropland.

Additionally, soil spectroscopy has remained a
unique concern due to platform reliability (i.e. the
mounted sensor’s spectral range and the limited
flight duration), spectral instability effects, and issues
regarding image processing (Angelopoulou et al 2019,
Wang et al 2021a). The condition of the soil sur-
face, such as soil moisture and surface roughness,
potentially impacts the infrared absorbance, then
may influence the prediction accuracy of hyperspec-
tral images (Minasny et al 2009, Lu et al 2013).
For example, Bricklemyer and Brown (2010) poin-
ted out that the sensor passing soils being collected
at different physical locations could result in various
wavelengths.

Furthermore, soil spectroscopy could be conduc-
ted in typical cropland which has certain repres-
entativeness for specific landscapes. Till now, The
Soil Spectral Library has been proposed and built
(Brown et al 2006, Viscarra Rossel et al 2016), which
takes varying soil surface conditions into account and
seems to be a step in the right direction (Hbirkou
et al 2012). Scientists from eight countries (represent-
ing Kenya, Israel, China, Sweden, Germany, United
States, Australia, and Brazil) are engaging in the
global soil VNIR spectral library, to establish the
correlations between the soil attributes (e.g. SOC,
CaCO3, and pHWater) (Viscarra Rossel et al 2016).
The local soil spectral library enables less effort and
cost compared to analytical wet chemistrymethods to
estimate soil carbon in cropland (Bellinaso et al 2010,
Rizzo et al 2016, Viscarra Rossel et al 2016).

3.2.4. Environmental covariates selection
Different combinations of environmental covari-
ates would influence the prediction accuracy, thus
selection of the ‘optimal’ combination has been
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increasingly applied (Zeraatpisheh et al 2021). A
growing number of studies have advocated diverse
tailored approaches to select environmental covari-
ates. Ideally, the most effective covariates not only
require a small subset of the relevant features with low
multicollinearity, but also could interpret the driving
features of SOC formation.

One common method to select appropriate cov-
ariates for mapping is based on the expert know-
ledge of soil-environment processes (Zhu et al 2010).
However, when faced with a large number of covari-
ates, the expert knowledge may be not comprehens-
ive, thus the so-selected covariates could influence
prediction accuracy (Shi et al 2018, Hu et al 2021).

Overall, most papers tend to use statistical meth-
ods or ML methods. Commonly, in MLR models,
the stepwise technique was used to select the covari-
ates based on the Akaike information criterion (Costa
et al 2018). Correlation analysis (e.g. Pearson) can
be used to avoid multicollinearity effects. Environ-
mental covariates are selected when the coefficient
between environmental covariates and soil carbon
is greater than a specific determined (Tayebi et al
2021). Moreover, pedometricians also joined forces
to use ML methods (e.g. recursive feature elimina-
tion) (Gregorutti et al 2017) on selecting covariates
(Shi et al 2018). Studies demonstrate that the variable
importance index (e.g. mean decrease in accuracy)
calculated by RF can facilitate success in evaluat-
ing the predicting power of environmental variables
(Grimm et al 2008, Behrens et al 2014, Yang et al
2019, Paul et al 2020b). These studies remain innov-
ative and significant in targeting the effectiveness of
environmental covariates selection. At the meantime,
ML-based approaches rely on large training sample
data. To combine the data-driven selection results and
expert knowledge on soil carbon dynamics could be a
more reasonable way (Wadoux et al 2021).

3.2.5. Summary of environmental covariates
Various covariates for mapping soil carbon have
been proposed and implemented in cropland. Differ-
ent influential covariates are found among different
scales. At the regional scale, SOC content is mainly
affected by climate covariates, soil parent material,
and soil type, while on a local scale, the differences
in SOC content often depend on topography, agricul-
tural management styles, and soil properties (Dong
et al 2019).

Spatial variability of soil carbon is frequently too
fine to be recorded by a coarse sample grid on a field
scale. At a local/regional level, the issue becomes even
more pressing. Soil carbon variability caused by local
transfer processes (e.g. erosion) combines with vari-
ability caused by wider pedogenetic factors (climate,
soil) at these scales, resulting in sometimes substantial
uncertainty in regional soil carbon estimates (Stevens
et al 2010). The importance of environmental covari-
ates is largely dependent on the study site’s specific

environmental covariates, notably topography, and
there is no consensus on the best covariates. To high-
light the agricultural management information of
specific plots, Dong et al (2019) have proposed the
idea of ‘land-parcel’. Environmental covariates were
adjusted according to ‘land-parcel’ andmapping with
‘land-parcel’ reduced the noise of unrelated environ-
mental covariates and highlighted the boundary that
was consistent with the actual field.

3.3. Validation and the mapping of uncertainty
Validation and quantifying the prediction uncertainty
are important to provide the quality information of
the mapping results. Data-splitting technique and
cross-validation were common methods for evaluat-
ing the predict results. A recent example on valida-
tion of a soil map by data-splitting is given by Hu et al
(2021). One issue with data splitting is that it is not
clear how to divide a data set so that accurate estim-
ations of map accuracy may be achieved. Variation in
environmental conditions between the training and
validation data could result in influencing accuracy of
models (Bonfatti et al 2016). Increasingly, research-
ers use several repeats of data-splitting to reduce ran-
domness. In case of relatively small sample size, cross
validation (e.g. k-fold cross-validation, leave-one-out
cross-validation, repeated k-fold cross-validation) is
selected to validate the models (Yang et al 2021,
Zeraatpisheh et al 2021, Zhang et al 2021). This differs
from data-splitting in that cross-validation repeats
the splitting, making it more effective and reliable
than data-splitting (Brus et al 2011). The RMSE, Lin’s
concordance correlation coefficient, mean absolute
error, the ratio of performance to deviation, and coef-
ficient of determination (R2) values are always used
for determining final prediction accuracy (Kumar
2015, Hong et al 2020, Wu et al 2021).

DSM predictions are coupled with uncertainty
(McBratney et al 2003). Model parameter, model
input, and model structure could result in model
uncertainty (Minasny andMcBratney 2002, Liddicoat
et al 2015). It is crucial to quantify the predictability
uncertainty of the maps to confirm their suitability
for managerial decision-making processes (Brus et al
2011). There are several approaches can be adopted
for quantifying the uncertainty of prediction. When
using the geostatistical model (e.g. universal kriging)
for mapping, the prediction uncertainty can be cal-
culated directly via the kriging variance (Li 2010).
Another way is to use the bootstrapping approach,
to obtain probability distributions of the outcomes.
The 90% or 95% confidence intervals, which is usu-
ally used to quantify the uncertainty of soil carbon
predictions (Adhikari and Hartemink 2017, Ellili et al
2019, Fathololoumi et al 2020). In data partitioning
(Malone et al 2014) and fuzzy clustering approach
(Shrestha and Solomatine 2006), the uncertainty is
expressed in the form of quantiles of the underly-
ing distribution of model error. By assuming that
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locations with similar environmental conditions have
similar soil properties (Hudson 1992), the uncer-
tainty of prediction at each location can also be
determined inversely related to its environmental
similarity to the soil sample set (Zhu et al 2015, 2018).

4. Challenges

Great progress has been achieved in the digital
mapping of soil carbon over the last decades. How-
ever, mapping soil carbon accurately still poses addi-
tional challenges on soil observation sampling, effect-
ive anthropogenic covariates generation, predictive
models development and so on. In addition, atten-
tions have been increasingly paid on the temporal
dimension of soil carbon mapping due to obvious
climate change, soil health concern and land sys-
tem modeling requirement. Pedometricians face an
increasing demand in modeling the spatio-temporal
soil carbon as well as revealing the underlying soil
processes.

4.1. Challenges in collecting soil carbon
observations in depths
Sampling design based on environmental covari-
ates feature space has been developed and applied
widely. For example, Minasny and McBratney (2006)
developed conditional Latin hypercube sampling
(cLHS) for soil mapping, which selected sample
points by taking a full coverage of each covariate.
These methods seemed to obtain more accurate
soil maps than the probability sampling methods
(Wadoux et al 2020). However, when considering
a temporal variation of soil carbon, novel and effi-
cient spatial-temporal sampling methods are needed
(Wadoux et al 2021).

Another important aspect of soil sampling is to
consider the characteristics of deeper soil layers. Until
recently, studies of soil carbon mapping have paid
more attention to surface layers (0–30 cm), while less
to deeper soil layers (30–100 cm) (figure 3(b)). Soil
processes vary at different depths due to the differ-
ent influential covariates. For example, soil proper-
ties at surface soil (0–30 cm) tend to be influenced
bymanagement variabilities such as fertilizer and till-
age, while deep soil (30–90 cm) tends to reflect the
natural patterns of soil variability (Knadel et al 2011).
In consequence, sampling design for several depths
needs to synthesize different environmental covari-
ates. Simply put, we need to develop new strategies
on how to obtain sampling points more efficiently in
cropland.

4.2. Challenges in extracting crop information
Various VI are widely used in the studies of agri-
cultural areas. However, most studies did not ana-
lyze the VI in combination with the characteristics
of soil carbon in cropland, nor did they discuss the
spatio-temporal characteristics of VI to a large spa-
tial extent. Particularly noteworthy is the fact that

some areas carry out household-based and scattered
farming systems with small fields, for example, in
China and Africa, which makes VI in those areas
not very ‘informative’ and lack sufficiently fine spa-
tial resolution (Dong et al 2019, Weiss et al 2020).
At present, researches on the extraction of crop rota-
tion or planting area based on remote sensing are
well developed (Begue et al 2018, Bendini et al 2019),
while the application of such information is subop-
timal. Another potential limitation is that wemay not
have includedVI capable of depicting the pedogenesis
and/or temporal fluxes of soil carbon over short-term
(seasonal) and long-term (climatic) trends, as well as
management impacts.

4.3. Challenges in obtaining agricultural
management information
Agricultural activities are increasing as major con-
tributors to the dynamic of soil carbon in the cro-
pland (Foley et al 2011). More studies begin to use
agricultural management information as environ-
mental covariates in mapping soil carbon rather than
just as the background of the study area. Currently,
the acquisition of agricultural information is mostly
based on some indirect relationships (table 1), such
as the distance from the irrigation system or the main
rivers in the area (Dong et al 2019), or data spatialized
from the statistical yearbook (Deng et al 2018). The
coarse spatial scale of agricultural management could
possibly hinder the accuracy of prediction (Martin
et al 2011). Undoubtedly, agricultural management
information such as the amount of fertilization and
the amount of straw returning to the field is import-
ant but difficult to quantify for each pixel. It is crit-
ical to be aware that the acquisition of such quant-
itative information still requires a large number of
field observations (Harms et al 2015). In summary,
two things conspired towards the present dilemma:
(a) the high cost of the fixed-point in large-scale crop-
land; (b) the difficulty to obtain accurate agricultural
management information under the empirical plant-
ing pattern.

Therefore, major investment in new measure-
ment will be required in countries with scant data
from credible, georeferenced field experiments. The
agricultural information would need to keep pace
with the effect of spatial differences on soil properties.

4.4. Challenges in the development of predictive
models
Research for predicting soil carbon has witnessed a
considerable shift from using statistical models to
ML models, because ML methods can handle well
the non-linear relationship between soil carbon and
environmental covariates. While, ML methods have
great capacity in predicting rather than explaining.
Typically, it is unknown how the covariates relate
to one another or whether the input interactions
exist (Wadoux et al 2020). This has resulted in criti-
cism that the ML methods are ‘black box’ prediction
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approaches without an explanatory basis (Benke et al
2020). The interpretation ofMLmethods to reveal the
complex system functioning and expose the import-
ance of each drive of soil carbon variation is help-
ful but relies on the input training sample data. Fur-
thermore, incorporating soil-forming processes in the
digital mapping of soil carbon with statistical models
or ML is a challenging exercise (Wadoux et al 2020,
2021).

There are both static variables (such as topo-
graphic variables) and dynamic/temporal variables
(such as annual mean temperature, and crop growth
variables) in soil mapping. Furthermore, the struc-
ture of temporal covariates may contain spatial-
temporal characteristics. This requires novel models
able to process the spatio-temporal information of
different data. However, the current methods com-
monly used in digital mapping of soil carbon, such
as MLR, RF, and RK, only employ the spatial charac-
teristics of the environmental covariates but are not
capable to deal with the spatio-temporal characterist-
ics of these data (Kumar 2015). In the future, when
using time-series remote sensing data or long-term
agricultural information in mapping soil carbon, it
is very urgent to explore methods that can deal with
both spatial and temporal features in using natural
and anthropogenic variables.

Soil carbon dynamics have recently gotten
increasing scientific interest (Li et al 2016, Mishra
et al 2019, Xie et al 2021). However, most of the cur-
rent studies only focus on static soil carbon mapping.
Therefore, we need to characterize the variation of
soil carbon in space and time to improve the mech-
anism and drivers of soil carbon dynamics.

5. Future horizons

Based on the review, we identify some challenges in
the current use of agricultural information and mod-
els for digital mapping of soil carbon, then we want
to outline several promising solutions to our inter-
woven request and application challenges (figure 7).
Moving forward, we should not be locked into a single
approach a priori, whether it be efficient sampling
strategies, model modification, or suitable agricul-
tural information. A holistic conceptual framework is
proposed for better monitoring spatial and temporal
variation of soil carbon to support food production,
soil protection, carbon sequestration, and emissions
mitigation (figure 7).

5.1. Efficient sampling strategies for obtaining
representative samples
Encouragingly, pedometricians have paid attention to
efficient sampling with lower cost but higher map-
ping accuracy (Wadoux et al 2021). For example, Ma
et al (2020) proposed that the in-situ field sampling
based on environmental similarity in case of inac-
cessibility of pre-designed sample points was more

accurate than cLHS in soil sand mapping. Wadoux
et al (2019) also pointed out that feature space cover-
age sampling was more efficient than cLHS. Feature
space coverage sampling is accomplished by minim-
izing a feature space distance requirement between
sampling and prediction locations by the k-means
method, aiming for an even sampling density in the
multivariate feature space (Wadoux et al 2019). Yang
et al (2013) and Zhang et al (2022) proposed repres-
entative sampling strategies to design typical samples
based on clustering of environmental covariates. The
representative sampling strategy proved determining
sampling points representing typical soil variations is
a potential efficient sampling strategy. For sampling
in cropland, the approach would deserve more atten-
tion in considering specific agricultural management
of cropland in the future.

When considering the spatio-temporal SOC con-
tent changes, efficient space-time samplings are
needed to apply. Brus (2014) stated the idea of
space-time sampling, which selected both sampling
locations and times by sampling probability. Com-
bining the characteristics of long-term agricultural
activities to designing a reasonable space-time sample
point distribution would tap into the effectiveness
of agricultural information, improve the accuracy of
dynamic SOC content mapping, and maximize the
value of sampling data.

5.2. Exploring time-series sensing data indicating
crop growth characteristics
Remote sensing data with good spatio-temporal res-
olutions provide opportunities for the acquisition of
time-series data indicating land surface conditions,
such as soil water conditions, soil mechanical com-
position, and crop characteristics (Zhao et al 2014,
Fathololoumi et al 2020, Zeng et al 2020a). Advanced
RS platforms make crop monitor cheaper, faster and
more accurate (Weiss et al 2020). Time-series data
could capture greater variability and thus indirectly
indicate agricultural management styles and levels.
Therefore, scholars should pay more attention to
the application of time-series environmental covari-
ates in the digital mapping of soil carbon and con-
tinue to explore various types of dynamic feedback
information based on remote sensing. Recent studies
have demonstrated the effectiveness of a new covari-
ate known as land surface dynamic feedback (LSDF)
which captures temporal spectral of the land surface
following a rainfall event (Liu et al 2012, Guo et al
2016, Zeng et al 2019).

The selection of spectral factors in agricul-
tural areas should be combined with the charac-
teristics of the crop growing season. Fathololoumi
et al (2020) indicated that the satellite-based factors
(albedo, emissivity, land surface temperature, incid-
ence) extracted in June and July were more import-
ant than those in August and September due to the
less influence of vegetation. And the difference was
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Figure 7. An integrated framework illustrating the promising solutions for digital mapping of soil carbon in cropland. Here we
outline some of the solutions to our interwoven request and application challenges: efficient sampling strategies, exploration of
time-series sensing data, the acquisition of agricultural management data, and the models incorporating pedological knowledge.

more definite under dense cultivation. Remote sens-
ing images tend to reflect the spectral reflectance of
the vegetation growth condition in the summer or
autumn, while the proximal geophysical covariates
can reflect the spectral reflectance of the soil condi-
tion in the spring or winter (Guo et al 2021b, Wang
et al 2021a). Thus, we can consider combining the soil
spectral bands andVI which can integrate the advant-
ages of remote sensing images on different dates.

5.3. Acquiring agricultural management
information
The important sources of agricultural information
include statistical yearbooks, farmer surveys data,
agricultural production research, management data
under precision agriculture, and some fixed-point
data serving agricultural policies. There are com-
mon methods to get an overview of management
information, such as interpolation of statistical data
at a county/village level. However, to obtain detailed
information on agricultural management, we must
invest in explicit consideration when establishing
standardized data collecting and sharing system in
the future. Government departments and research
institutions should also join forces to overcome some
data protection challenges when mapping large-scale
soil mapping, by giving incentives to local farmers
and stakeholders who are often well informed about
agriculturalmanagement information (Amelung et al

2020). For example, an earthworm population survey
across 1300 ha in the United Kingdomwas conducted
by farmers on their land which was devised and lead
by Rothamsted Research (Rumpel et al 2018). Della
Chiesa et al (2019) proposed a viable cooperative
structure for obtaining soil and agricultural data that
connects individual farmers with a variety of stake-
holders. The management of agricultural informa-
tion could be achieved within a GIS framework. Such
open platforms provide tools for sharing spatial and
temporal agricultural information dynamics.

Field research results and remote sensing can be
combined to confirm each other so that crop man-
agement information can be better monitored and
characterized to a certain extent. Some remote sens-
ing variables can monitor crop status throughout the
season, such as crop yield and crop nitrogen content
(Weiss et al 2020). For instance, the survey and stat-
istical data, before applying, should be tested across a
broad range of dynamics as simulated by remote sens-
ing monitoring.

5.4. Incorporating pedological knowledge into
statistical/MLmodels
In addition to increasing the accuracy of prediction
models to improve soil carbon content/stock predic-
tions, we should increase our understanding of the
mechanismof forming and decomposition of soil car-
bon under the impact of environmental covariates.
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Incorporating pedological knowledge into the stat-
istical or ML models enhances our ability to under-
stand variations among soil carbon and to precisely
and accurately estimate and predict changes in soil
carbon according to its accumulation and decom-
positionmechanism. Themost basic incorporation is
using pedological knowledge in the selection of envir-
onmental covariates. For example, Hendriks et al
(2021) introduced a mechanistic model to predict
SOM stocks, which started with identifying major
processes that influenced SOM stocks, then collect-
ing the input data for themodel. The other alternative
method is incorporating pedological knowledge into
the conceptual model, such as structural equation
modeling (Angelini et al 2016).

Statistical models or ML models combined with
process-based models, e.g. century, Rothamsted
Carbon model (RothC), and DeNitrification and
DeComposition,may be a potential solution tomodel
soil carbon in space and time. For example, Xie
et al (2021) proposed the idea of incorporating the
process-based RothC model into the geographically
weighted regression kriging to better the space-time
modeling of SOC contents in the heavily human-
impacted area and the attempt resulted in improved
model performance. Process-based models can bene-
fit from simulating point results, while ML models
show opportunities to extrapolate relationships by
using a large number of covariates, so a method that
combines the advantages of the two can be designed
for optimal direction.

In the past few years, advanced data mining
methods, such as deep learning, have been explored
to improve spatio-temporal soil carbon modeling
(Wadoux 2019, Yang et al 2021). A potential advant-
age of deep learning is its ability to deal with mul-
tiple source data (both spatial and spatio-temporal
data)(Wang et al 2022). Due to the ‘black-box’ char-
acteristics of deep learning orMLmethods, the incor-
poration of pedological knowledge would improve
the model performance in mapping soil carbon dis-
tribution conforming to the law of soil genesis.

6. Conclusion

Soil science is at the interface of several questions
relevant to the global agenda of ecosystems, cli-
mate change, and agriculture. However, due to the
rapid development of contemporary facility agricul-
ture, severe anthropogenic disturbance creates a high
level of uncertainty in accurate soil mapping, partic-
ularly in cropland. A holistic understanding of agri-
cultural activity on soil carbon spatial distribution
patterns and its changing processes is critical. Focus-
ing on cropland, our review of the literature sug-
gests some important points that are likely to func-
tion better in the digital mapping of soil carbon and
in tackling the common goal of carbon emission-
agriculture development on a scale and at a level that

is appropriate for the complex challenge of carbon
neutrality.

(a) The growing publications on digital mapping of
soil carbon in cropland state that the attention to
cropland’s soil carbon is increasing. Studies are
clustered in several countries, namely China, the
United States, Iran, and Australia.

(b) Most studies focused on mapping topsoil SOC/-
SOM content, and fewer studies on SOC stocks.
Further efforts are necessary to gain insights into
deeper soil which is essential for a better under-
standing of soil function.

(c) In many cases, climate covariates, parent mater-
ial, and soil type play an important role in soil
carbon on the regional scale, while on a local
scale, the variability of soil carbon often depends
on terrain, agricultural management styles, and
soil properties. Many researchers have realized
the significance of agricultural information as
environmental covariates for the digital map-
ping of soil carbon. Agricultural management
information is usually obtained through sur-
vey data, remote sensing technology, or expert
knowledge. The acquisition of detailed spatial
agricultural management information should be
improved by establishing standardized monitor-
ing and sharing system.

(d) There has been a large number of studies using
environmental covariates based on proximal/re-
mote sensing. Although the steps towards the
time-series sensing data are diverse, imperfect,
incremental, and take time, they provide a prom-
ising opportunity to capture the spatial variabil-
ity of soil carbon.

(e) Among the predictive models, there were a
significant number of investigations concern-
ing some promising algorithms, such as PLSR,
RK, RF, SVM, and ANN. No single model
was found to be the optimum method in all
study areas, although ML and hybrid models
are increasingly applied. In addition, to develop
more advanced prediction methods such as
deep learning, more attention should be given
to incorporating pedological knowledge in the
modeling process, where major improvements
in combining process-based and statistical/ML
models may reveal new insights into the inter-
pretability of predictive results.

Overall, DSM is a promising tool that helps
to assess and monitor soil carbon conditions with
enough accuracy for cropland. An integrated frame-
work including efficient sampling strategies, time-
series sensing data, agricultural management data,
and pedological knowledge-based models will work
better in cropland and at different scales. There is
a need to design more sophisticated technologies
(e.g. sufficient samples/covariates sharing platforms
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and dynamic model structures) for modeling soil
carbon and processes at fine resolution and with high
accuracy.
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