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ABSTRACT

Vegetation coverage in highly developed areas has been significantly altered in response to multiple
disturbances over recent decades. However, the major driving factor of vegetation coverage change in
these areas remains unclear, with climate change and anthropogenic factors playing interactive roles
under different soil and terrain conditions. Comprehensively understanding the underlying drivers of
vegetation change can provide references for regulating environmental management and prevention of
vegetation degradation. In this paper, a structural equation modeling (SEM) method was employed to
quantify the effects of fundamental natural environment (i.e. the relative stable variables including soil
and topography), climate change and human activity change on vegetation coverage change in Jiangsu
province, China from 2000 to 2015. Four variables including land use, population density, road impact
and night lights were used to indicate human activities. The results showed that the increase of NDVI
smaller than 0.10 covered 39.13% of the study area while the decrease of NDVI larger than 0.10 accounted
for 20.23%. Areas with NDVI increase mainly distributed in croplands in northern Jiangsu. This could be
explained by the increase of crop yield due to the development of modern agriculture. The decrease of
NDVI was mainly observed in southern Jiangsu with higher urbanization level and city centers in
northern Jiangsu, indicating the effect of rapid urbanization on vegetation degradation. The constructed
SEM model suggested that the total effects (influential coefficients) of fundamental natural environment,
climate change, and human activity change on NDVI change in Jiangsu were —0.24, 0.17, and —0.74,
respectively. Although the fundamental natural environment didn’t have a direct effect on NDVI change,
but it had an indirect effect through interactions with human activities. We also constructed SEM models
for northern and southern Jiangsu separately, due to their different natural environment and changing
patterns of climate change. The results indicated the different driving mechanisms of NDVI change in
northern and southern Jiangsu. Furthermore, the results suggested night light as the best indicator of
human activity change, followed by the road impact index. We concluded that our study offered a
framework to better understand and explain the complex interrelationships behind the spatial temporal
change of NDVL

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

regulating energy exchange and carbon cycles (Piao et al., 2003;
Bégué et al,, 2011; Liu et al., 2018). Vegetation change are usually

Vegetation, as a natural link between soil, atmosphere, and considered as an indicator of environmental changes, ecosystem
water, plays a fundamental role in terrestrial ecosystems by function evolution and human activities (Pettorelli et al., 2005).
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Satellite-derived Normalized Difference Vegetation Index (NDVI)
has often been taken as a proxy for terrestrial vegetation growth in
recent years (Zhang et al., 2013; Sun et al., 2015; Tao et al., 2019).
Thanks to the easy accessibility of high resolution remote sensing
data in the worldwide extent, long-term NDVI datasets have been
widely used for monitoring vegetation dynamics (Piao et al., 2011;
Leroux et al., 2017).

Vegetation change can be affected by climatic factors, land use
change, and other human-induced factors (Qu et al., 2018). Studies
showed that the change of precipitation as well as temperature
over a time period significantly impact NDVI variations (Liu and
Menzel, 2016; Zhang et al., 2020). And the climatic influences on
NDVI vary across topographic conditions and soil types (Muradyan
et al,, 2019). Over the past decades, human activities become more
intensive and diverse, exerting greater pressures on ecosystems at
both local and regional scales (Rounsevell et al., 2012; Motesharrei
et al., 2016; Diaz et al., 2018). The anthropogenic factors thus have
become non-negligible drivers affecting the spatial-temporal vari-
ations of vegetation. Furthermore, the complicated interactions
between natural and anthropogenic factors make the vegetation
dynamics a more complex process. Due to the complex mecha-
nisms of vegetation change, quantifying the contributions of main
drivers to vegetation changes is still a challenging.

Numerous studies have been conducted to understand the un-
derlying drivers of vegetation change in the past decades. Many
studies focused on the impacts of climatic factors (mainly tem-
perature and precipitation) on vegetation change, in which
regression or correlation analysis has been commonly adopted. For
example, Mao et al. (2012) analyzed the effects of regional climates
on seasonal NDVI during 1982—2009 in Northeast China based on a
correlation analysis. Zhang et al. (2013) employed regression ana-
lyses to detect the NDVI-based vegetation changes and their re-
sponses to climate change from 1982 to 2011 in a Basin in the
middle Himalayas. Lamchin et al. (2018) carried out correlation and
regression analyses to detect correlations between vegetation
greenness and climate variables in Asia. Gu et al. (2018) identified
the relationship between vegetation NDVI and climatic factors
based on linear regression and partial correlation for the
2000—-2014 period in a Basin in southwest China. Pang et al. (2017)
used Pearson correlation coefficients to examine the relationships
between the NDVI and the two climatic variables (temperature and
precipitation) in Tibet plateau from 1982 to 2012. Sun et al. (2019)
conducted a partial correlation analysis to examine the relation-
ships between NDVI variation and elevation, precipitation, and
temperature based on satellite observations of the Yarlung Zangbo
River Basin in the Tibetan Plateau.

In recent years, more studies have been developed to distin-
guish the human-induced effects on vegetation dynamics from the
effects of climatic factors (Zhang et al., 2016; Yin et al., 2020). Wen
et al. (2017) first evaluated the total effects of climate factors on
NDVI variations using the adjusted coefficient of determination of a
multiple linear regression, and took the remaining fraction (i.e. one
minus adj-R?) as the effects of anthropogenic factors on NDVI
variations. Jiang et al. (2017) built the regression relationships be-
tween the mean NDVI and climatic factors in Central Asia, then the
NDVI residuals (defined as differences between the predicted and
observed NDVI values) were considered as the consequence
affecting by human activities. Similarly, Qu et al. (2018) adopted the
residual analysis method to distinguish the impacts between
climate change and ecological restoration projects on vegetation.

Except for the residual analysis on assessing the total effect of
anthropogenic factors, other statistical and machine learning
methods have been used to identify the effects of natural and
anthropogenic driving factors individually. Leroux et al. (2017)
calculated the variable importance of rainfall, soil, topography,
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land cover changes, population density, and accessibility for vege-
tation trend from 2000 to 2015 in the Sahel using the random forest
algorithm. Han et al. (2019) examined the NDVI trend and its de-
pendency on elevation and land cover in the Hexi region, northwest
China for the period 1982—2015 based on statistical tests. Zhang
et al. (2020) explored the effects of natural and anthropogenic
driving factors (including land use changes and population density)
on vegetation dynamics based on a multiple linear regression
analysis in a large dam-reservoir-river system.

Many of the previous studies focused on only climatic factors,
and others basically took climatic factors and anthropogenic factors
as independent variables. However, there is few studies concerning
the complex interactions between natural factors and anthropo-
genic factors on vegetation change. Peng et al. (2019) quantified
influences of natural factors on vegetation changes based on
geographical detector in Sichuan, western China, in which effects of
individual natural factor and interactions between each two factors
were calculated. However, geographical detector can only examine
the interactive effect of two factors. The vegetation change system
is driven by multiple factors and their interactions. Although there
are statistical methods to quantify the interactions between two
variables, most models (such as correlation analysis) cannot effec-
tively quantify the impact of a variable by removing the influence
from other variables and thus lead to biased results (Sugihara et al.,
2012; Chen et al, 2018; 2020a). Some causation models (e.g.
Convergent Cross Mapping (CCM) and Granger Causality (GC)) that
can remove the influence from other influencing factors, have been
employed (Chen et al., 2019, 2020b). However, these models are
advantageous in extracting reliable interaction between just two
variables, and fails to reliably quantify the overall effects of multiple
influencing factors on the target variable. Compared with other
models, structural equation modeling (SEM) can not only quantify
the impact of a variable by removing the influence from other
variables, but also effectively quantify the combined effects of
multiple influencing factors on the target variables by considering
the interactions between independent variables (Grace and Keeley,
2006). It was first applied in social sciences (Sobel, 1982; Pearl,
1998), and recently has been applied in agriculture (Bayard and
Jolly, 2007), soil (Brahim et al., 2011; Angelini et al., 2016), envi-
ronmental science (Sparrevik et al., 2011; Wang et al., 2019; Hao
et al., 2020), and ecology (Grace et al., 2014, 2016; Lamb et al.,
2014). SEM quantitatively identifies direct and indirect causal ef-
fects, and the indirect effect is caused by interactions between
factors (Sobel, 1987). Therefore, SEM can be a potential tool to
analyze the complicated interactions between factors affecting
vegetation change.

Vegetation coverage in highly developed areas has been
significantly altered in response to multiple disturbances over
recent years (Zhong et al., 2019; Kowe et al., 2020). Understanding
the underlying drivers of vegetation change and their interactions
can provide references for regulating environmental management
and prevention of vegetation degradation in developed areas.
However, there is limited studies on how the driving factors
interact with each other when impacting vegetation change in
these areas. Without consideration of interactions between driving
factors, the extracted influence of specific drivers on vegetation
changes are probably biased. The relative contribution of different
natural and anthropogenic drivers to vegetation changes in the
developed areas remains unclear. Jiangsu province is a highly
developed and influential province in China. Intense urbanization
and agricultural modernization, especially since 2000, have exerted
great influences on vegetation changes in this area. This study at-
tempts to quantify the influences of natural and anthropogenic
drivers on vegetation changes indicated by NDVI in Jiangsu prov-
ince using the SEM approach. In addition to the climatic factors (i.e.
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annual average temperature and annual precipitation), we also
included topography and soil as fundamental environment factors,
which determine the vegetation distribution. Furthermore, we
used four human pressure variables (land use, road impact, popu-
lation density and night-time lights) in the concept of the human
footprint (Sanderson et al., 2002) to represent anthropogenic fac-
tors in this study. The objectives of this study are, 1) to examine the
contributions and interactions of natural and anthropogenic drivers
to vegetation changes in Jiangsu province from 2000 to 2015, China
with Structural Equation Modeling, 2) to identify the main factors
affecting NDVI change in Jiangsu province. Our findings will pro-
vide an important scientific foundation for revealing the in-
teractions mechanism of natural and anthropogenic drivers for
vegetation change in developed areas.

2. Materials and methods
2.1. Study area
Jiangsu Province is located in the Yangtze River Delta of eastern

China (30°45’ to 35°20’N, and 116°18’ to 121°57’E) (Fig. 1). This area
has an eastern Asian monsoon climate with an annual average
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temperature of 13.6—16.1 °C and an average annual precipitation of
1, 000 mm. The elevation ranges from —163 to 633 m, with the flat
plains in north and middle of the province account for 85% of the
total area. Due to natural conditions suitable for agriculture, Jiangsu
Province has been one of most important grain producing province
in China. Furthermore, Jiangsu has experienced a rapid urbaniza-
tion and industrialization, becoming one of the richest provinces in
China. Yet the development of southern Jiangsu (including Nanjing,
Changzhou, Wuxi, Suzhou, yangzhou, Taizhou, and Nantong) has a
higher level of urbanization than northern Jiangsu (including
Xuzhou, Lianyungang, Suqian, Huai’an and Yancheng). Due to the
urbanization, the area of cultivated land decreased from 67.8% to
64.2% from 2000 to 2015, and urban land area increased from 2.7%
to 4.5% of the province. The socioeconomic development and
climate change over the past decades have changed the land sur-
face and ecosystem functions of Jiangsu (Huang et al., 2015).

2.2. Data

The normalized difference vegetation index (NDVI) data of
Jiangsu in 2000 and 2015 with a resolution of 1 km*1 km were
downloaded from RESDC (http://www.resdc.cn). The annual NDVI
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Fig. 1. The location and digital elevation model (DEM) of the study area, the municipal districts with purplish red texts belong to southern Jiangsu, and those with purple texts

belong to northern Jiangsu.
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data were generated using the maximum value composite (MVC)
method based on the ten-day SPOT/VGTATION NDVI data. In other
words, the maximum value in the ten-day composites was regar-
ded as the annual NDVI value at each pixel. The MVC method is
established based on the principle that low-values are either
erroneous or have less vegetation vigor, and thus minimizes cloud
contamination, atmospheric effects and scan angle effects (Holben,
1986). In this case, this dataset was a reliable source for our
research.

Both climate change and human activities were the main driving
factors for vegetation change in Jiangsu. Besides, the impact of
climate and human activities were usually varying with different
soils and topography. Soil and topography are relatively stable
compared with climate and human activities. Thus, we called soil
and topography as fundamental natural environment factors in this
study. The combinations of climate, human activities and funda-
mental natural environment conditions would have different af-
fects on NDVI change. Thus, ten variables representing natural
environmental condition, climate and human activities were
generated, as listed in Table 1. All the variables were projected into
the UTM coordinates for further processing. The reason why we
chose these variables and the production procedure of all the data
were illustrated as follows.

2.2.1. Fundamental natural environmental variables

In this study, the relatively stable factors, soil and terrain, were
called the fundamental natural environment. Although the impact
of soil and terrain on vegetation change depends, soil and terrain
determine the vegetation distribution. Soil type is correlated with
the vegetation type to some extent, and the nutrient availability
and water retention capability of different soils are highly related to
vegetation growth status (Leroux et al., 2017). The soil type of
Jiangsu Province was extracted from the 1:100 Million Soil Map of
the People’s Republic of China (http://www.resdc.cn). This soil map
was compiled by the Chinese Soil Census Office and published in
1995. The soil system adopted was genetic classification system.

Table 1
The potential driving factors for vegetation change.
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There were mainly 8 soil types in Jiangsu, including Anthrosols,
Semi-hydromorphic soil, Semi-argosol, Argosols, Hydromorphic soil,
Ferralosols, Solonchak and Solonetz, Primosols.

The topographic condition would also influence the vegetation
growth of a location (Okou et al., 2016; Liu et al., 2018; Raduta et al.,
2018). Furthermore, it would affect the way and intensity of human
activities, thus indirectly affect vegetation change. In this study, we
generated three commonly-used topographic variables, including
elevation, slope, and topographic wetness index. The three vari-
ables were derived from the 30 m SRTM DEM of this study area
using the Spatial Analyst Tools in ArcGIS 10.6. Topographic wetness
index was calculated according to the following equation (Beven
and Kirkby, 1979): twi = In (a/tanB), where a is the cumulative
upslope area draining through a point (per unit contour length), § is
the slope gradient at the point.

2.2.2. Climatic variables

Many researches have examined the significant response of
vegetation to precipitation and temperature change. We obtained
the annual average temperature and annual precipitation of Jiangsu
in 2000 and 2015 from the national meteorological data set of
China on platform of RESDC (http://www.resdc.cn/). Based on daily
observation data collected from more than 2400 meteorological
stations in China, the ANUSPLIN interpolation software (Hutch-
inson M F, 1998) was used for the interpolation of annual average
temperature and annual precipitation of China at a resolution of
1 km.

2.2.3. Human activity variables

Following the concept of “human footprint” (Sanderson et al.,
2002), four variables measuring the direct and indirect human
pressures were generated for Jiangsu in 2000 and 2015. The four
variables included population density, land use/cover, night-time
lights and road impact.

The number of people in an area is frequently used as a primary
underlying cause of human activity intensity (Cincotta et al., 2000).

Factors Variables Year Data set Original Data Sources
spatial
resolution
Fundamental Soil type - 1: 1 Million Soil Map of the People’s Republic of - Data Center for Resources and Environmental Sciences Chinese
natural China Academy of Sciences (RESDC) (http://www.resdc.cn)
environment  Elevation - Shuttle Radar Topography Mission (SRTM) 30 m Geospatial Data Cloud site, Computer Network Information
digital elevation model (DEM) Center, Chinese Academy of Sciences (http://www.gscloud.cn)
Slope - Derived from SRTM DEM of Jiangsu 30m -
Topographic - 30 m -
wetness index
Human activity =~ Road impacts 1995* Calculated based on the National road data, the - Data Center for Resources and Environmental Sciences Chinese
change index detailed procedure was in Section 2.1.3. Academy of Sciences (RESDC) (http://www.resdc.cn)
2015 - Geographical Information Monitoring Cloud Platform of
China (http://www.dsac.cn/)
Population 2000/ Gridded Population density of the World 1 km Socioeconomic Data and Applications Center (SEDAC) (http://
2015 (GPW), Version 4 sedac.ciesin.columbia.edu)
Night-time 2000/ Global DMSP-OLS Night-time Lights Time 1 km Data Center for Resources and Environmental Sciences Chinese
Lights 2013** Series 1992—2013, Version 4 Academy of Sciences (RESDC) (http://www.resdc.cn)
Land use 2000/ National land use database for China 1 km Data Center for Resources and Environmental Sciences Chinese
2015 Academy of Sciences (RESDC) (http://www.resdc.cn)

Climate change  Annual 2000/ National meteorological data set of China 1 km Data Center for Resources and Environmental Sciences Chinese
average 2015 Academy of Sciences (RESDC) (http://www.resdc.cn)
temperature
Annual

precipitation

* Note that the road data in 2000 was not available, thus the road data in 1995 was downloaded as an alternative source, assuming that the changing of roads in Jiangsu from

1995 to 2000 was few.

** Note that night-time lights data in 2015 was not available, the night-time lights data in 2013 was then downloaded as an alternative source.
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Human population density used in this study was the Gridded
Population of the World, Version 4 (GPWv4) data sets (Center for
International Earth Science Information Network, 2016).

Land use/cover represents how people use land, such as for
settlements, growing food, or producing economic goods (Foley
et al., 2005; Geist and Lambin, 2002). Change of land use is
related to change of vegetation cover type or vegetation greenness
(Mila i Canals et al., 2007). The land use data was obtained from the
China’s land use database developed by Environmental Sciences
Chinese Academy of Sciences (RESDC) (H. Liu et al., 2018). The
original data was at a resolution of 1 km with 6 primary classes
(including cropland, forest land, grassland, water, residential, in-
dustrial and mining land, and unused land) and 26 secondary
classes.

Night-time Lights is an effective data for capturing flowing and
unobtrusive human activities (Elvidge et al., 1997). The Night-time
Lights data for Jiangsu in 2000 and 2015 were the DMSP-OLS
(Defense Meteorological Satellite Program-Operational Linescan
System) data with a resolution of 30 arc-seconds downloaded from
RESDC. The DMSP-OLS sensors detect the gleam visible-near
infrared (VNIR) radiance on the earth surface, which represent
the night lights with intensity degree from the urban lights and
even small-scale residential areas, traffic, etc.

Roads shrink the distance of human from nature (Trombulak
and Frissell, 2000; Assis et al., 2019), and can indicate the devel-
opment level of an area. Usually, the closer distance from a location
to a road, the greater the impact of human activities on the envi-
ronment of this location. Furthermore, the difference of the impact
with distance varies among the road types. For example, the impact
of a railway on a location would be larger than that of a country
road with the same distance. Therefore, we calculated the road
impact (RII) index by taking both the distance to a road and the road
type into account. The vector data of roads for Jiangsu in 1995 and
2015 was first downloaded as shown in Table 1. Roads in each year
were categorized into the following six types: expressway, railway,
national roads, provincial roads, country roads, and other roads. For
roads of type i, the shortest distance between each pixel and roads
of this type (D;) was calculated using the Path Distance tool in
ArcGIS 10.6. If the shortest distance of one pixel to a type of roads
was beyond 15 km, then the shortest distance of this pixel was
assigned to 15 km due to the assumption that the road would have
rare impact on a pixel when the distance of the pixel to the road
was larger than 15 km (Sanderson et al., 2002). The total impact of
all types of roads on one pixel was calculated base on the following
weighted sum formula.

Rl =

6
w;*(1-D; /15) (1)

i=1

where RII represent the total impact value of all type of roads for
one pixel. The larger the RII value, the greater the impact of roads. i
is the iy, type of roads. w; is the weight for different road types. In
this study, we determined the weights according to the study of Li
et al. (2018), i.e. the weights for expressway, railway, national road,
provincial road, county road, primary urban roads, secondary urban
roads, and other roads equaled to 0.23, 0.21, 0.18, 0.12, 0.09, 0.07,
0.06 and 0.04 respectively.

2.3. Structural equation modeling for NDVI change

Structural equation modeling (SEM) is a method for developing
and testing hypotheses about the relationships in a system (Grace,
2006; Van Acker and Witlox, 2010). SEM encompasses a set of
multivariate statistical techniques, including factor analysis,
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regression, path analysis, and simultaneous equation modeling
(Hou et al., 2014). SEM has several advantages for causal analysis.
First, a variable can be a dependent variable in one set of re-
lationships, and can be an independent variable in another set of
relationships meanwhile. Second, it can manage observed variables
and the so-called latent variables which cannot be measured
directly. In general, latent variables are a combination of observed
variables (Sheykhfard and Haghighi, 2020). For example, the hu-
man activity factor cannot be observed but can be indicated by
several observed variables (such as population, road impact, etc.),
thus can be defined as a latent variable. Third, SEM identifies direct
and indirect causal effects quantitatively, and the indirect effect is
caused due to the interactions between latent variables. If causal
relationships are indirectly connected, for instance soil and terrain
could affect NDVI change through their influence on human ac-
tivities (Teferi et al., 2013; Asselen and Verburg, 2012), SEM could
identify the indirect effect of the fundamental natural environment
on NDVI change. Due to the above advantages, SEM is highly suit-
able for detecting the influences of driving factors on vegetation
coverage change.

To obtain the relationship network, the application of SEM in-
cludes the following steps. First, several hypotheses on the re-
lationships between variables are developed based on literature
review or prior knowledge, and a graphical conceptual model is
constructed according to these hypotheses. Then the conceptual
model is converted to a mathematical model through SEM. The
mathematical model is calibrated based on either experimental or
observational data. Poor model fitting could suggest revision of the
conceptual model and re-specification of the mathematical model.
When model fitting is satisfactory, the final SEM model is con-
structed. The flow chart for development of a SEM model for NDVI
change is shown in Fig. 2.

Hypotheses based
—> i
on literatures
Graphical
conceptual model
v
Mathematical -_— Y _ _ |
N model : Driving ||
|| actors |
<—DATA—| |
A 4 | NDVI ||
Model calibration || change :
& evaluation ===

YES
v

The fitted SEM
model

Fig. 2. A schematic diagram of SEM modeling for detecting the driving mechanism of
NDVI change in Jiangsu.
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2.3.1. Graphical conceptual model establishment

The target variable of our study is the NDVI change of Jiangsu
from 2000 to 2015. Based on the knowledge on driving mechanism
of NDVI change through literature review, the main hypotheses of
our study were as follows. We took NDVI of Jiangsu in 2000 as a
starting point, and assumed either successive climate change or
change of human activities would cause change of vegetation
coverage since then. At the same time, human activities would also
affect climate change. The fundamental natural environment might
have a direct impact on NDVI change. Besides, it would affect the
change patterns of human activities in different locations, for
instance high elevation and steep slopes would hinder the explo-
ration of natural resources. This indicated that fundamental natural
environment had an indirect effect on NDVI change. These general
hypotheses were converted into a graphical conceptual model
describing the interactive relationships between driving factors
and NDVI change in Jiangsu (Fig. 3).

In the conceptual model, fundamental natural environment,
climate change and human activity were the latent variables which
cannot be observed directly. Soil type (St), elevation (Ele), slope
(Slp) and topographic wetness index (TWI) were the observed
variables to indicate the fundamental natural environment. The
change of annual precipitation (Ap), annual average temperature
(Aat) from 2000 to 2015 were the observed variables to indicate
climate change. The change of road impact index (Rii), population
density (Pd), night-time lights (Ntl) and land use (Lu) from 2000 to
2015 were the observed variables to indicate the human activity
change.

2.3.2. Data processing

In this study, 20456 calibration points were generated using a
systematic sampling strategy with a grid of 2000 m x 2000 m from
the study area. For each sample point, its elevation, slope, TWI and
soil type were extracted from the data of elevation, slope, TWI and
soil type shown in Table 1, respectively. The change of road impact

St || Ele || Slp || TWI

undamenta
NDVI
natural
. change
environment

activity change

Rii ¢|| Pd ¢ |[Ntl c|[Lu ¢ Ap c || Aat ¢

Fig. 3. The conceptual structural equation model of NDVI change from 2000 to 2015 in
Jiangsu, boxes represents observed variables, and ellipses the latent variables. Arrows
between latent variables and arrows from latent variables to NDVI change identified
the cause and effect relations, while arrows from latent variables to observed variables
represented the correlation relationships between them. The abbreviations of the
observed variables were as follows, St, soil type, Ele, elevation, Slp, Slope, Ap_c, change
of annual precipitation, Aat_c, change of annual average of temperature, Rii_c, change
of road impact idex, Pd_c, change of population density, Ntl_c, change of night lights,
Lu_c, change of land use.
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index (Rii), population density (Pd), night-time lights (Ntl), annual
precipitation (Ap), and annual average temperature (Aat) from
2000 to 2015 were calculated for each sample point as subtracting
the value in 2000 from that in 2015. The soil types were coded
according to its suitability for vegetation growth. As for land use
change, pixels with land use change were labeled as 0, and others
with no land use change were labeled as 1. The above processing of
the observed variables were conducted in ArcGIS 10.6.

2.3.3. Model calibration and revision

A maximum likelihood estimation method was adopted for SEM
modeling. The model fit was assessed using several goodness-of-fit
indices, including CFI (Comparative Fit Index), RMSEA (Root
Squared Mean Error of Approximation) and root mean square re-
sidual (SRMR) (Byrne, 2001). If the original model fitted poorly, it
was revised for several rounds by deleting or changing the non-
significant (p > 0.05) paths (Xie et al., 2020; Yang et al,, 2019). A
lower SRMR than 0.05, lower RMSEA than 0.08, and CFI approxi-
mating 1 indicated a good fit of modeling (Hooper et al., 2008). If
several models passed the criterion, a best model was determined
by comparing the goodness-of-fit indices of the SEM models. The
‘lavaan’ package (Rosseel, Y., 2012) in the R statistical language (R
Core Team, 2014) was used to conduct SEM based on the calibra-
tion sample points.

Due to the different patterns of climate and human activities in
northern and southern Jiangsu, SEM models were also constructed
for northern and southern Jiangsu to examine the different driving
mechanisms of NDVI change.

2.3.4. Analysis of the direct and indirect effects of driving factors

When the model and all variables passed the statistical test, the
path diagram and standardized coefficients were provided. The
path coefficients between the latent variables and NDVI change
were standardized regression coefficients. A larger path coefficient
indicated a larger effect of a latent variable on NDVI change. The
total standardized effects of a latent variable on NDVI change
consisted of both direct and indirect effects (Grace et al., 2016;
Grace and Bollen, 2005). The direct effect of one latent variable
(such as human activity change to NDVI change) was the path co-
efficient on the arrow which directly pointed to NDVI change from
the latent variable of human activity change. And the indirect effect
was measured as the product of the coefficient on the arrows from
human activity change to a mediator variable (such as, climate
change) and the coefficient on the arrow from the mediator vari-
able to NDVI change. Moreover, in a SEM, there might be more than
one mediator variable from one driving factor to NDVI change, thus
the indirect effects were the sum of all indirect coefficients of every
indirect path.

3. Results
3.1. Spatial and temporal variations of NDVI in Jiangsu

The spatial distribution of NDVI in Jiangsu Province in 2000 and
2015 and its change are shown in Fig. 4. It showed that most parts of
the province had a high or an extremely high vegetation coverage
in both 2000 and 2015. Areas of NDVI larger than 0.6 accounted for
94.43% of the total area in 2000 and 81.60% in 2015 (Table 2),
respectively. This indicated a good vegetation coverage in Jiangsu.
However, the proportions of high and extremely high NDVI
changed from 2000 to 2015. Specifically, high vegetation coverage
decreased from 75.67% in 2000 to 44.87% in 2015, while extremely
high vegetation coverage increased from 18.75% in 2000 to 36.72%
in 2015. A notable extremely low NDVI distributed in narrow strips
in Lianyungang and Yancheng municipal districts along the
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Fig. 4. NDVI of Jiangsu Province in 2000 and 2015 and its change.
Table 2
NDVI characteristics in Jiangsu and its change from 2000 to 2015.
2000 2015 2000—-2015
NDVI Area (km?) Proportion (%) Area (km?) Proportion (%) Area change (km?) Proportion (%)
[0.0—0.2] 601.56 0.69 569.43 0.65 -32.14 —-0.04
(0.2—04] 1209.15 1.38 4349.54 4.96 3140.39 3.58
(0.4-0.6] 3078.12 3.51 11,233.89 12.80 8155.77 9.29
(0.6—0.8] 66,399.06 75.67 39,367.82 44.87 —27031.23 -30.81
(0.8—1.0] 16,456.15 18.75 32,223.37 36.72 15,767.22 17.97

coastline. The land use of these areas were mainly salt pans.
Furthermore, NDVI in 2015 had a larger heterogeneity than in 2000.
The differences in NDVI between north and south Jiangsu became
very obvious in 2015. In specific, NDVI in south Jiangsu in 2015 was
generally much lower than that in north Jiangsu. Yet most of north
Jiangsu had a higher NDVI in 2015 than that in 2000.

As shown in Table 3, the total area of NDVI increase was close to
that of NDVI decrease. The increase of NDVI was mainly slight in-
crease (increase smaller than 0.10), the proportion of which was
39.13%. Meanwhile, the slight decrease (decrease smaller than 0.10)
and remarkable decrease (decrease larger than 0.10) of NDVI
accounted for 25.10% and 20.23% of the study area, respectively.
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Table 3
The areas and proportions of NDVI change in Jiangsu from 2000 to 2015.
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Proportion (%)

Northern Jiangsu (%) Southern Jiangsu (%)

NDVI change Area (10? km?)

Remarkable decrease [-0.62—0.10] 177.52 20.23
Slight decrease (—0.10—0.01] 220.27 25.10
No change (—0.01-0.01] 72.72 8.29

Slight increase (0.01-0.10] 343.35 39.13
Remarkable increase (0.10—0.79] 63.58 7.25

4.98 15.25
10.54 14.56
4.42 3.87
27.58 11.55
5.77 1.48

NDVI in most of southen Jiangsu decreased obviously, as we can
also see in Fig. 4. Extremely decrease of NDVI mainly distributed in
the ‘Suzhou-Wuxi-Changzhou’ urban agglomeration, where almost
all the decrease area connected together. The main reason for the
NDVI decrease was due to the rapid urbanization, especially for
areas around Yangtze River. NDVI in areas surrounding northern
city centers also decreased to different extent. This is consistent
with the urban development in Jiangsu. In comparison, areas with
NDVI increase most distributed in non-urban areas of north Jiangsu,
especially in Suqian, Huai'an, and Xuzhou municipal districts. The
land use of these areas were mainly cultivated land, and a larger
crop yield of these areas probably explained the NDVI increase.

3.2. The constructed SEM model of NDVI change in Jiangsu Province

The final fitted SEM model for Jiangsu Province is shown in
Fig. 5. It can be seen that the interactions among variables were
well supported in SEM. The Goodness-of-fit (GOF) measures of the
final SEM were as follows, CFl = 0.94, RMSEA = 0.077, and
SRMR = 0.04, indicating a good fit of the model. The paths between
slope/TWI and fundamental natural environment didn’t pass the
significance test, thus were deleted.

It showed that NDVI change was impacted by climate change,
human activity change, and fundamental natural environment in
different ways. Climate change only had a direct impact on NDVI
change with an influential coefficient of 0.17. Human activity
change not only had a direct impact with an influential coefficient

R?=0.56

undamenta
natural NDVI
environment change

VA N
0.78 -0.98
Pre_c Tem_c

Fig. 5. The final graphical fitted SEM model showing the multivariate relationships of
NDVI change and its driving factors. The thickness of the arrows was proportional to
the standardized path coefficients shown on each arrow. Green lines showed statis-
tically significant positive paths, while red lines represented statistically significant
negative paths. Variables in circles were latent variables and variables in boxes were
observed variables.

of —0.86, but also had a positive indirect effect on NDVI change
through its positive effect on climate change. Yet the fundamental
natural environment had nearly no direct impact on the change of
NDVI. However, it indirectly impacted the change of NDVI through
its influences on human activities. There were two indirect paths
from fundamental natural environment to NDVI change. One was
through human activities change to NDVI change, the other was
through human activities change and then climate change. The two
indirect effects of fundamental natural environment were —0.28
and 0.04, respectively.

The direct and indirect paths of fundamental natural environ-
ment, human activity change, climate change on NDVI change
based on the SEM model is shown in Table 4. By adding up the
direct and indirect effects of the latent variables on NDVI change,
the total effects of fundamental natural environment, climate
change, and human activity change on NDVI change were —0.24,
0.17, and —0.74, respectively.

Among the natural variables, soil type was the variable best
indicating fundamental natural environment, followed by eleva-
tion. A soil type with higher suitability for vegetation growth
indicated a larger decrease of NDVI, while a higher elevation indi-
cated a lower decrease of NDVI. Both annual average temperature
and annual precipitation were good indicators for climate change.
Night light was the best indicator for human activities, followed by
the road impact index. And a larger increase of night light and road
impact caused a larger decrease of NDVI.

3.3. The constructed SEM models of NDVI change in northern and
southern Jiangsu

The fitted SEM models with estimated coefficients for northern
and southern Jiangsu are shown in Fig. 6. The two SEM models
indicated different driving mechanisms of NDVI change in northern
and southern Jiangsu. For northern Jiangsu (CFI = 0.99,
RMSEA = 0.04, and SRMR = 0.019), the fundamental natural
environment showed no direct effect on human activity or NDVI
change. This was mainly due to the flat terrain of northern Jiangsu.
The other difference was that the effect of climate change on NDVI
change was negative in northern Jiangsu, while the effect of climate
change on NDVI change was positive for either the entire province
or southern Jiangsu. This was due to the different changing patterns
of climate in northern and southern Jiangsu. For example, the
annual precipitation in 2015 in northern Jiangsu districts decreased
or slightly increased compared with that in 2000, while the annual
precipitation in southern Jiangsu increased. Besides, human activity
change had a very small effect on climate change, and the indirect
effect of human activity change through climate change was thus
very small. The total effects of climate change and human activity
change were —0.11 and —0.62, respectively.

The fitted SEM model for southern Jiangsu (CFI = 0.917,
RMSEA = 0.075, and SRMR = 0.044) was similar with that for the
whole province, but climate change had a lager effect on NDVI
change in southern Jiangsu than in the entire province. Besides,
elevation had a higher loading coefficient to the fundamental nat-
ural environment, showing its higher indicative effect than in the
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Table 4
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The direct, indirect and total effects among fundamental natural environment (FNE), climate change (CC), human activity change (HAC) and NDVI change based on the

statistically significant SEM paths.

Paths Effects on human activity change Paths Effects on climate change Paths Effects on NDVI change
Direct Direct Direct
FNE—HAC 0.32 HAC—CC 0.71 HAC—NDVI —-0.86
CC—NDVI 0.17
Indirect Indirect Indirect
FNE —HAC— CC 023 FNE - HAC— NDVI —0.28
FNE —HAC— CC— NDVI 0.04
HAC— CC— NDVI 0.12
Total Total Total
FNE ~ HAC 0.32 FNE ~ CC 0.23 FNE ~ NDVI —0.24
HAC ~ CC 0.71 CC ~ NDVI 0.17
HAC ~ NDVI —0.74

entire province. The total effects of fundamental natural environ-
ment, climate change and human activity change on NDVI change
were —0.21, 0.32, and —0.71, respectively. Although the effects for
the three driving factors were different for northern and southern
Jiangsu, human activity change played the most important role in
driving NDVI change.

4. Discussions
4.1. Applicability and limitation of the SEM method

In recent studies on vegetation dynamics and its driving
mechanism, the complex interactions between the driving factors
have been rarely studied. SEM is an efficient method to examine the
networks of causal relationships among factors by taking all the
variables into account. In this study, we defined three driving fac-
tors, including fundamental natural environment, climate change
and human activity change, as latent variables. By using the latent
variables, the quantified relationships of how the three driving
factors impacted each other were estimated. Furthermore, SEM
partitioned direct from indirect effects of the driving factors on
NDVI change. The indirect effects were mainly caused by the in-
terrelationships between the latent variables. In our case, funda-
mental natural environment impacted human activities,
meanwhile human activities had an effect on climate change. Thus,
fundamental natural environment had an indirect effect on NDVI
change. This is consistent with our understanding on the mecha-
nism of NDVI change.

The spatial pattern of climate change in northern and southern
Jiangsu was different, leading to different effects of climate change
on NDVI change. It can be also seen from the opposite directions of
the effects of climate change on NDVI change in SEM models for
northern and southern Jiangsu. This was one reason causing the
smaller effect of climate change compared with that of funda-
mental natural environment in the entire province. It also shows
that partitioning the areas with different patterns for SEM
modeling is helpful to better understand the different casual re-
lationships in those areas.

The correlation analysis between different variables and NDVI
change was shown in Fig. 7. It showed that night light were nega-
tively correlated with NDVI change with the highest coefficient,
followed by annual average temperature (with a positive coeffi-
cient), annual precipitation, and road impact index. The annual
average temperature and annual precipitation showed high corre-
lations with NDVI change. However, the total effect of climate
change based on SEM was not high, compared with that of human
activity change and even natural environment. This is mainly due to

the different calculation mechanism for correlation analysis and
SEM model. The correlation analysis only estimated how relevant
one variable is to the other variable without considering other
variables. Due to interactions between different driving factors, the
value of correlation coefficients may not interpret the quantitative
influence of individual variable on NDVI change (Chen et al., 2017).
Instead, the path coefficients from SEM method is designed to
understand the coupling between two variables by excluding in-
fluences from other factors. Furthermore, SEM could estimate the
total effect of driving factors (i.e. climate change and human ac-
tivities) by measuring both direct and indirect effects.

Although some limitations exist, correlation analysis provides
valuable reference for understanding the relationship between
NDVI change and its driving factors. Furthermore, the correlation
coefficients could provide important reference for SEM model
revision or variable selection for causality analysis.

To our knowledge, the approach built for this study is the first
attempt to examine the driving mechanism of NDVI change in a
developed region. The concept of the SEM model can be further
refined for similar areas highly interfered by human activities,
where the model may include more complex drivers representing
human activity intensities such as variables indicating degree of
agricultural mechanization and urban electricity consumption, etc..

The present SEM study has some limitations. First, the sample
data for model calibration was not measured data but rather
interpolated data. The climate change was represented by sub-
traction of two years data. Variables representing long-term
climate change could added in future work. Second, the relation-
ships between the driving factors and NDVI change are usually not
linear. However, it is not easy to quantity the non-linear complex
relationships, the estimation of SEM in our study was linear. More
study on possible non-linear relationships between the driving
factors and NDVI change should be conducted in future. Finally, the
fitted model didn’t fully explained the variances present in NDVI
change. This may due to the unmeasured factors which require
further investigation. However, the R? of the fitted models and the
fitness indices showed a good explanation ability of the constructed
models.

4.2. Comparison with other related studies in Jiangsu

The results of our study showed that most of the degraded
vegetation from 2000 to 2015 occurred in areas around cities,
especially in south Jiangsu. And the greening of vegetation was
mainly in cultivated land in north Jiangsu. The results were consist
with the studies of Yao et al. (2017) and Zhang et al. (2020). The
degradation of vegetation in Jiangsu is mainly due to the rapid
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Fig. 6. The fitted SEM models for northern and southern Jiangsu.

urbanization and economic development of Jiangsu resulting in
transferring from cultivated land to urban land use. And the
greening of vegetation was mainly because of the development of
modern agriculture including fertilization, breeding and mechani-
zation (Wang et al.,, 2019). For example, the total agricultural me-
chanical power and grain yield for northern Jiangsu from 2000 to
2015 increased by 1718.74 x 10* kW and 794.77 x 10* ton,
respectively (Table 5).

4.3. Patterns of the coupling between human activity change and
NDVI change

Fig. 8 shows patterns of the coupling between human activity
change (predicted by SEM) and NDVI change. Area with the pattern
of human-activity-decrease and NDVI-increase occupied 43.1% of
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Fig. 7. The correlations between different variables and NDVI change. The Pearson
correlation was adopted to measure the correlation between continuous variables and
NDVI change. The Spearman correlation was adopted for the categorical variables
including land use change and soil type.

the total area. This pattern was mainly distributed in non-urban
areas in northern Jiangsu. 78.0% of this pattern was cropland, fol-
lowed by rural area of 13.2% and forest of 5.1% in 2000. Land use
slightly changed in 2015, with cropland occupying 77.8% and rural
area occupying 13.4%. The increase of NDVI was owing to the in-
crease of crop yield (Table 5) and greening in rural areas. Agricul-
ture modernization caused the increase of crop yield. At the same
time, many villagers left villages to go to work in cities. The
decrease of population was the main reason for decrease of human
activities.

Area with the pattern of human-activity-increase and NDVI-
decrease occupied 30.4% of the total area. This pattern was
mainly distributed in the highly urbanized southern areas and
areas around northern city centers. This indicated the influences of
urbanization on land surface. From 2000 to 2015, the increasing
area of urban, rural land and industrial & traffic land in this pattern
occupied 6.1%, 3.99% and 1.58% of Jiangsu, respectively. This in-
crease was mainly transferred from cropland, especially from
paddy field. In addition, yielding losses in cropland in this pattern
have reported (Pan et al., 2013; Wang et al., 2019), resulting in the
decrease of NDVI. Furthermore, the requisition-compensation bal-
ance of cropland policy started in 1999 in China, which means that
arable land should be compensated for construction land use. It
may happens that some cropland with not-good land quality were
compensated (Song and Pijanowski, 2014). This can be also a reason
of NDVI decrease.

There were 6.2% of the total area with simultaneous increase of
NDVI and human activities, which mainly distributed in southern
Jiangsu. This indicates that some human activities improved
ecosystem functions for those areas. For example, the urban
greenness rate from 33.2% up to 42.8% due to the demonstration of
vegetation recovery projects (http://tj.jiangsu.gov.cn/). This in-
dicates that policy play a role in protecting natural environment
from human pressures (Feng et al., 2020). These areas may provide
references for mitigating degrading of ecosystem functions for
other areas.

There were 17.7% of the total area where human activity
decreased but NDVI also decreased, mainly distributed in croplands
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Table 5
The change of agricultural indices for northern and southern Jiangsu from 2000 to 2015 according to the statistical yearbooks.
Total planting area of crops Planting area of grain crops Total agricultural mechanical The amount of fertilizer applied for Grain yield (10%
(10° ha) (10° ha) power (10% kW) agriculture (10% ton) ton)
Northern 518.39 648 1718.74 31.95 794.77
Jiangsu
Southern —546.88 —333.83 183.50 —47.43 —45.93
Jiangsu

DHIV IHIV Others

17.7%

DH DV IH DV Water

© Central city

I Municipal boundary_25_ 50 100 150 200

Fig. 8. Patterns of the coupling between human activity change and NDVI change, DH: decrease of human activities (value < —0.001), IH: increase of human activities
(value > 0.001), DV: decrease of NDVI (value < —0.001), IV: increase of NDVI (value > 0.001).

in Yancheng, Taizhou and north Lianyungang. This indicates that
government should pay attention on those areas to improve the
ecosystem functions.

5. Conclusions

This study adopted SEM modeling to quantify the influences of
the fundamental natural environment (soil and terrain), climate
change and anthropogenic drivers on NDVI change in Jiangsu
Province from 2000 to 2015. The results showed that the total ef-
fects of the fundamental natural environment, climate change, and
human activity change on NDVI change in Jiangsu Province
were —0.24, 0.17, and —0.74, respectively. The fundamental natural
environment indirectly impacted NDVI change through its inter-
active relationship with human activities. We also constructed SEM
models for northern and southern Jiangsu, indicating the different
driving mechanisms of NDVI change. This was mainly due to their
different natural environment and changing patterns of climate

1

change. Although the effects for the three driving factors were
different for northern and southern Jiangsu, human activity change
played the most important role in driving NDVI change. Further-
more, the results suggested night light as the best indicator of
human activity change in Jiangsu, followed by the road impact in-
dex. Soil type was the best indicator for natural environment in
Jiangsu.

Our results showed that SEM is supportive of hypotheses on the
causal relationships of driving factors on NDVI change. SEM pro-
vides a perspective by partitioning direct from indirect effects and
thereby revealing a variety of mechanisms behind the NDVI change
patterns. Partitioning areas based on their different changing pat-
terns of driving factors for SEM modeling is necessary to better
understand the complex mechanisms of NDVI change. We conclude
that our study offers a framework to better understand and explain
the complex interrelationships behind the spatial temporal change
of NDVI. The work of the study can improve monitoring of vege-
tation degradation as well as land-use planning.
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