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A B S T R A C T   

Obtaining the spatial distribution information of soil organic carbon (SOC) is significant to quantify the carbon 
budget and guide land management for migrating carbon emissions. Digital soil mapping of SOC at a regional 
scale is challenging due to the complex SOC-environment relationships. Vegetation phenology that directly in
dicates a long time vegetation growth characteristics can be potential environmental covariates for SOC pre
diction. Deep learning has been developed for soil mapping recently due to its ability of constructing high-level 
features from the raw data. However, only dozens of predictors were used in most of those studies. It is not clear 
that how deep learning with long term land surface phenology product performs for SOC prediction at a regional 
scale. This paper explored the effectiveness of ten-years MODIS MCD12Q2 phenology variables for SOC pre
diction with a convolutional neural network (CNN) model in Anhui province, China. Random forest (RF) was 
applied to compare with CNN using three groups of environmental variables. The results showed that adding the 
land surface phenology variables into the pool of the natural environmental variables improved the prediction 
accuracy of CNN by 5.57% of RMSE and 31.29% of R2. Adding phenology variables obtained a higher accuracy 
improvement than adding Normalized Differences Vegetation Indices. The CNN obtained a higher prediction 
accuracy than RF regardless of using which group of variables. This study proved that land surface phenology 
metrics were effective predictors and CNN was a promising method for soil mapping at a regional scale.   

1. Introduction 

Soil organic carbon (SOC), as one of the most important soil prop
erty, is crucial for many soil functions and ecosystem services (Grinand 
et al., 2017). It also plays an important role in global carbon cycle (Lal, 
2004; Hamzehpour et al., 2019), and drew wide attentions in climate 
change studies (Bradford et al., 2016). Predicting the spatial distribution 
of soil organic carbon is significant to guide land management for soil 
health and migrating carbon emissions (Vaudour et al., 2016; Angelo
poulou et al., 2019). 

The methods for SOC spatial prediction have been rapidly developed 
in the past decades. One common approach is interpolation (such as, 
Kriging) based on sample data (Dou et al., 2010; Elbasiouny et al., 
2014). However, a high interpolation accuracy requires a large amount 
of samples which is labor-extensive and costly to collect. Since SOC at a 
location are regulated by interactions of climate, terrain, and vegetation, 
etc., environmental covariates are increasingly used for SOC prediction 

to increase prediction accuracy with limited samples (Grinand et al., 
2017; Lamichhane et al., 2019). Those approaches to predict SOC based 
on the soil-environment relationships are so called digital soil mapping 
(DSM) (McBratney et al., 2003; An et al., 2018). Both the environmental 
covariates and the prediction methods determine the DSM accuracy. It 
is, therefore, meaningful to develop influential environmental cova
riates and effective prediction methods for producing accurate SOC 
maps. 

Numerous variables have been used for mapping SOC, such as cli
matic variables, terrain attributes, soil parent materials, and so on 
(McBratney et al., 2003; Grinand et al., 2017). Remote sensing (RS) data 
has been increasingly used in DSM because of its easy accessibility, large 
spatial coverage and long time series. Those commonly-used RS vari
ables include surface reflectance, band ratios representing soil or vege
tation, and vegetation indices (McBratney et al., 2003; Zhou et al., 
2021). The surface reflectance or band ratios indicating soil is mainly 
effective for bare soil (Peng et al., 2003), and vegetation indices such as 
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Normalized Differences Vegetation Index (NDVI) are more widely used 
(Mora-Vallejo et al., 2008). However, the use of vegetation indices 
would not always improve the mapping accuracy much (Wang et al. 
2018; Schillaci et al., 2017). In case of interactions between SOC and 
vegetation over a long period, variables based on the long term RS data 
better indicating the vegetation growth status instead of several single 
vegetation indices can be developed for SOC mapping. 

Vegetation phenology is promising variables directly indicating 
vegetation growth characteristics of a long period. Vegetation 
phenology is reported to be closely related to soil functions (Araya et al., 
2016) and is largely linked to SOC dynamics (Hoffmann et al., 2018). 
The study of Yang et al. (2020) verified the effectiveness of the pheno
logical parameters extracted based on NDVI profiles in a cropland SOC 
prediction study. However, the extraction of phenological parameters 
from NDVI profiles needs field observations to train the extraction 
model, which is costly especially for a large area. Alternatively, land 
surface products such as Moderate-resolution Imaging Spectroradi
ometer (MODIS) Land Cover Dynamics product, which provide global 
annual land surface phenology measurements over years, may serve as 
facilitate and powerful predictors for SOC prediction at a regional scale. 

Many prediction methods have been employed for digital soil map
ping over the past decades (Grunwald, 2009; Wadoux, 2019; Zhang 
et al., 2021). Machine learning is one of the most accurate methods 
(Grinand et al., 2017; Hamzehpour et al., 2019). Currently, deep 
learning has become a promising direction in machine learning (LeCun 

et al., 2015). The major advantage of deep learning models is their 
capability of extracting high-level features from raw data through a 
series of processing layers (LeCun et al., 2015; Tien Bui et al., 2020). 
Deep learning have been successfully employed in time series analysis 
(LeCun and Bengio, 1995), computer vision (Krizhevsky et al., 2012), 
nature language processing (Lee et al., 2018), landslide susceptibility 
assessment (Tien Bui et al., 2020), and so on. As for soil mapping, several 
studies have been conducted with deep learning recently. Behrens et al. 
(2018) developed a deep learning method for soil texture and zinc 
mapping based on multi-scale terrain attributes. Convolutional neural 
network (CNN) has been used used to simultaneously predict multiple 
soil properties (Ng et al., 2019; Wadoux, 2019; Padarian et al., 2019), 
and classified soil aggregates based on images (Azizi et al., 2020). The 
above studies verify the out-performance of deep learning in soil 
mapping. 

In most of the above soil mapping studies using deep learning, only 
dozens of predictors were used. The number of inter-annual phenolog
ical parameters are usually hundreds, which is advantageous but not 
used for SOC prediction with deep learning. It is not clear that how 
effective deep learning with long term land surface phenology product 
for SOC prediction is at a regional scale. Thus, the objectives of this 
paper are, 1) to develop a deep learning model, specifically convolu
tional neural network (CNN) for SOC prediction in Anhui province with 
time series satellite-based land surface phenological variables, 2) to 
evaluate whether adding phenologcial variables would improved the 

Fig. 1. The study area and the sample locations.  
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SOC prediction accuracy compared with common-used variables 
including climate, terrain with/without vegetation index, and 3) to 
compare the developed CNN with an accurate machine learning method, 
random forest, for SOC prediction. 

2. Study area and data 

2.1. Study area 

Anhui province is located in central-eastern China (29◦23′44′′N- 
34◦39′5′′N, 114◦52′35′′E-119◦39′37′′E), which covers an area of 1.40 ×
105 km2. Elevation varies from 0 to 1806 m with large flat plains in 
northern areas, low hills in middle areas and mountains in southwestern 
and southern areas (Fig. 1). The average annual temperature of Anhui is 
14–16 ◦C, and the annual precipitation is 750–2000 mm. The parent 
materials in Anhui are variable, including granite, basalt, schist, 
perknite, diorite, sandstone, shale, and others. According to the national 
soil genetic classification system of China, five soil orders occur in 
Anhui, including Semi-hydromorphic soils in the northern area, Primi
tive soils, Anthropogenic soils and Eluvial soils in the central area, and 
Ferro-allitic soils in the southern areas (Data Center for Resources and 
Environmental Sciences Chinese Academy of Sciences (RESDC)). Anhui 
has experienced intensive human activities. There are several land use 
types, i.e. cropland, forest, shrub and grass, and construction land. 

2.2. Sample data 

In the study area, 733 samples were collected in 2011, 2015, and 
2016 from three projects with different sampling strategies (Fig. 1). Two 
hundred eighty nine samples were collected across the whole province 

using a stratified random sampling strategy with the parent materials as 
strata, 183 samples collected based on experts’ knowledge in three 
counties (Dingyuan, Mengcheng and Xuanzhou), and 261 samples 
collected in Xuancheng (the dense samples mainly in southern Anhui in 
Fig. 1). The Xuancheng samples included 60 samples collected based on 
a stratified random sampling strategy, 57 sample points collected with 
10 km by 10 km grid arrangement based on a systematic sampling 
strategy, 57 samples collected to cover environmental feature space with 
an integrative hierarchical stepwise sampling (Yang et al., 2013), 57 
samples using a heuristic uncertainty directed sampling (Zhang et al., 
2016) and 30 samples based on environmental similarity (Ma et al, 
2020). Although the samples were not uniformly distributed over the 
geographic space, the samples represented the distribution of the envi
ronmental variables well. The representation on the environmental 
feature space ensured a good chance of fitting soil-environment re
lationships through deep learning or machine learning. 

Soils were sampled at a depth of 0–20 cm at each sample location. A 
dichromate oxidation method (external heat applied) (Nelson et al., 
1996) was used to measure soil organic carbon concentration (g/kg). 

2.3. The conventional environmental variables 

In this study, we selected 22 environment variables to represent 
climate, terrain, parent materials and vegetation index, as shown in 
Table 1. The annual NDVI data from 2007 to 2016 were downloaded 
from RESDC (http://www.resdc.cn), which were produced using a 
maximum value composite (MVC) method based on the ten-day SPOT/ 
VEGTATION NDVI data. The annual NDVI data is able to represent the 
vegetation growth for each year. To be consistent with the resolution of 
DEM, the original parent material data was rasterized into a raster layer 
with a 90 m cell size, and the climate and vegetation data were resam
pled to 90 m using a nearest neighbor assignment algorithm. All 

Table 1 
The environment variables of the study area.  

Factors Variables Data Sources Original 
resolution 

Climate Annual mean 
temperature 

Chinese Academy of 
Agricultural Sciences (An 
et al., 2018) 

1, 000 m 

Annual precipitation 
Annual mean 
evaporation 
Annual accumulated 
temperature above 
10 ◦C (Acc10) 
Arid index 
Moisture index 

Terrain Elevation The Spaceshuttle Radar 
Topographical Mission 
(SRTM) Digital Elevation 
Model (DEM) (https 
://search.earthdata.nasa. 
gov/). 

90 m 

Slope gradient Calculated with the terrain 
analysis software 
3DMapper (www. 
terriananalytics.com) 
based on the SRTM DEM. 

Planform curvature 
Profile curvature 

Topographic wetness 
index (TWI) 

Calculated with the 
multiple flow direction 
strategy (MFD-md, Qin 
et al., 2007) using a 
software SimDTA V1.0. 

Parent 
materials 

Parent materials Extracted from the 1:500, 
000 geological map 
database of China (http 
://www.ngac.org.cn/). 

– 

Vegetation Annual normalized 
differences vegetation 
index (NDVI) from 
2007 to 2016 

Downloaded from Data 
Center for Resources and 
Environmental Sciences 
Chinese Academy of 
Sciences (RESDC), 
http://www.resdc.cn. 

1, 000 m  

Table 2 
The description of the phenology metrics in MODIS MCD12Q2 product.  

Phenology 
metrics 

Description Unit 

NumCycle The total number of vegetation 
cycles with peak in product 
year 

– 

Greenup The date of EVI2 first crossing 
15% of the segment EVI2 
amplitude 

Days 

MidGreenup The date of EVI2 first crossing 
50% of the segment EVI2 
amplitude 

Days 

Maturity The date of EVI2 first crossing 
90% of the segment EVI2 
amplitude 

Days 

Peak The date of EVI2 get to the top 
of segment EVI2 amplitude 

Days 

Senescence The date of EVI2 last crossing 
90% of the segment EVI2 
amplitude 

Days 

MidGreendown The date of EVI2 last crossing 
50% of the segment EVI2 
amplitude 

Days 

Dormancy The date of EVI2 last crossing 
15% of the segment EVI2 
amplitude 

Days 

EVI_Minimum The minimum value of 
segment EVI2 (the 2-band 
Enhanced Vegetation Index) 
amplitude 

NBAR (Nadir Bidirectional 
Reflectance Distribution 
Function-Adjusted 
Reflectance)-EVI2 

EVI_Amplitude The value of segment EVI2 
amplitude maximum minus 
segment EVI2 amplitude 
minimum 

NBAR-EVI2 

EVI_Area The value of sum of daily 
interpolation of EVI2 from 
Greenup to Dormancy 

NBAR-EVI2  
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variables were re-projected to the WGS1984_UTM_50N projection 
system. 

2.4. The MODIS phenology product 

Satellite remote sensing has proven a powerful tool to monitor large- 
scale land surface phenology (Moon et al., 2019; Hmimina et al., 2013). 
The MODIS Land Cover Dynamics (LCD) product (MCD12Q2) serves as 
annual measurements of global land surface phenology at a 500 m 
spatial resolution since 2001 to 2018. It has been well assessed by 
several scholars (Ganguly et al., 2010; Moon et al., 2019). It provides 11 
phenology metrics for each vegetation cycle detected per year, and at 
most two vegetation cycles can be detected. Due to its long time series 
record, we used the MODIS LCD Product in this study. 

We selected the 11 phenology metrics of the first vegetation cycle 
(Table 2) from the Collection 6 MODIS LCD Product since not all pixels 
have the second vegetation cycle. To cover all the sampling time and 
take consideration of the impact of historical cropping, we selected the 
annual MCD12Q2 phenologcy metrics from 2007 to 2016, resulting a 
total of 110 phenology variables. To be consistent with the above 
environment variables, we resampled the phenology variables to a res
olution of 90 m. 

3. Methodology 

We developed a CNN model for predicting the spatial distribution of 
SOC content, and used a widely-used and accurate machine learning 
method, random forest (RF) compared with CNN. 

3.1. Development of different environmental variable sets 

The environmental variables were grouped into three pools to eval
uate the performance of phenological parameters on soil prediction with 
CNN and RF. The first group was climatic, topographic variables and 
parent materials listed in Table 1, which we called the natural envi
ronmental variables. The second group was the first group (the natural 
variables) and the vegetation indices (annual NDVI from 2007 to 2016). 
The third group was the first group (the natural variables) and the 
phenology variables listed in Table 2 from 2007 to 2016. 

3.2. Convolutional neural network 

CNN is one mainstream deep learning model and includes one or 
more convolutional layers. It has been proven to be successful in image 
and video processing (Krizhevsky et al., 2012; Azizi et al., 2020), soil 
prediction (Wadoux, 2019; Ng et al., 2019) and other geographical 
element prediction (Tien Bui et al., 2020). A CNN model is typically 
established with an input layer, several hidden layers (including 
convolution layers, pooling layers and fully-connected layers), and an 

output layer. The CNN architecture of our study is shown in Fig. 2. 
The input layer is training points with environmental data. It can be 

specified with width (w), height (h) and several channels (c). Due to that 
SOC of a pixel is impacted by its neighborhood pixels, the n environ
mental variables of every training point (pixel p(i, j)) and its neighbor
hood pixels was organized as the input data (Fig. 3.). In Fig. 3., w*h is the 
neighborhood size of pixel p(i, j), for example w = h = 9 in Fig. 2. And 
the number of environmental variables was the number of channels. 

The convolution layer is used to extract features from the input data 

Fig. 2. The structure of CNN for SOC prediction.  

Fig. 3. The input data structure, p (i, j) indicates the training point, w is width, 
h is height, c is the number of channels (hereafter the number of environ
ment variables). 

Fig. 4. Illustration of the convolution operation with a 3*3 filter over a 
5*5 array. 
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through the convolution operation, which uses a filter sliding over the 
input data (Fig. 4). A single or multiple convolutional layers can be used 
for identifying features. The output of this layer is used as an input in the 
next layer after passing through an activation function. The activation 
function is used to realize nonlinear transformation for achieving a rapid 
convergence of the network. There are some activation functions, 
including sigmoid, tanh, and Rectified Linear Units (ReLU) (Ng et al., 
2019). ReLU is the most common activation function, and is capable to 
converge faster than using sigmoid or tanh (Krizhevsky et al., 2012). 

The pooling layer is employed to reduce the dimensions of the output 
data from the last step by providing a more abstract representation, 
which reduces computational costs and prevents over-fitting of the 
network. The common pooling operation is max and average pooling 
(Zuo et al., 2019). In this study, the max-pooling with a filter of 2 × 2 
was used (Fig. 5). 

The last output data from pooling is flattened into a one-dimension 
vector, and connected to fully-connected layers. The fully connected 
layer contains numerous neurons connecting to the output, i.e. SOC 
content in this study. A dropout layer is used to reduce the over-fitting 
risk in fully-connected layers (Krizhevsky et al., 2012). 

Due to that we have 733 training points, constructing a too complex 
network could increase the risk of over-fitting. We constructed a 
network including two convolutional layers, two max-pool layers, three 

full-connected layers, and one dropout layer (Table 3). The layers in 
CNN were connected by weights and trained to reduce the difference 
between the predicted and the observed output with an initial learning 
rate of 0.01. 

Different neighborhood size for the input layers would contain 
different ranges of spatial information. In this paper, we selected mul
tiple neighborhood sizes, including 3*3, 5*5, 7*7, 9*9, 13*13, 17*17, 
21*21, 25*25, and 29*29 to examine the impact of spatial neighborhood 
size on soil prediction. And an optimal size with the highest prediction 
accuracy was chosen for CNN with each environmental variable set. The 
evaluation of the predictions were demonstrated in Section 3.4. 

The CNN was implemented in Python (v3.6.1, Anaconda 4.4.0) using 
Tensorflow backend. 

3.3. Random forest as a comparison model 

Random forest has been proven as an accurate machine learning 
method in digital soil mapping (Grinand et al., 2017; Wadoux, 2019). RF 
integrates multiple decision trees based on the idea of ensemble learning 
(Breiman, 2001; Cutler et al., 2012). It utilizes the boostrap strategy to 
randomly select two thirds of the training data to construct each deci
sion tree, and leave the rest of samples as validation set. Every decision 
tree randomly selects some predictors to find the best node splits. The 
final prediction is determined based on all decision trees. 

Two important parameters, the number of randomly selected pre
dictors for each tree building (mtry) and the number of trees to be 
learned in forest (ntree), need to be set. As for mtry, the rounded down 
square root of the total number of environmental variables was taken as 
its value by default (Breiman, 2001). We set ntree as 15,000 because it 
meets the requirement to acquire stable results in our experiments. 

Random forest was conducted using the ‘randomForest’ package 
(Breiman and Cutler, 2012) in the R language. 

3.4. Evaluation of the prediction accuracy 

A ten-fold cross validation was conducted to validate the perfor
mance of CNN and RF for SOC prediction. All the samples were parti
tioned equally in ten sub-sets of sample points that were stratified on 
parent materials. Each sub set was taken as to validate the prediction 
results based on the calibration set compiled from the remaining sample 
points. Two indices were adopted to evaluate the generated SOC maps 
based on the validation sample set, including the root-mean-square error 
(RMSE) and coefficient of determination (R2). The two indices were 
established as follows: 

Fig. 5. Illustration of the first step of the max pooling operation with a 
2*2 filter. 

Table 3 
Specifications of layers used in CNN for SOC prediction.  

Layers Filter size Number of filters/neurons Activation 

Convolutional 3x3 32 ReLU 
Max-Pooling 2x2 – – 
Convolutional 3x3 64 ReLU 
Max-Pooling 2x2 – – 
Fully-connected – 512 ReLU 
Dropout – – – 
Fully-connected – 1 Linear  

Fig. 6. The validation results (RMSE and R2) of the SOC prediction for Anhui province with different neighborhood sizes for CNN, N: the natural environment 
variables, N + NDVI: the natural variables and NDVI, N + Phen: the natural variables and phenology variables. 
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(pi − oi)

2

n

√
√
√
√
√

(1)  

R2 = 1 −
∑n

i=1(pi − oi)
2

∑n
i=1(oi − o)2 (2) 

where pi and oi are the predicted and observed SOC content of the ith 
validation sample point, respectively; n is the sample size of validation 
points; ō is the average observed SOC content of validation samples. 

The above indices were calculated for 10 times based on each vali
dation sample set, and the average of the 10 results were taken as the 
final evaluation results. 

4. Results 

4.1. The descriptive characteristics of SOC 

Based on the 733 samples in Anhui province (with a sample density 
of 5.24 10-3 per/km2), Anhui province has a large range of SOC content 
(0.91 ~ 89.12 g/kg) with a mean of 13.11 g/kg and a middle coefficient 
of variation (46.76%), indicating a heterogeneity of SOC in Anhui. 
Generally, the SOC in northern Anhui and its variation is smaller than 
those is middle and southern Anhui (as seen in Fig. 1). And southern 
Anhui has the largest variance of SOC mainly due to its varying 
topography. 

Fig. 7. The boxplots of RMSE (a) and R2 (c) for CNN and RF, and the improvement of the average RMSE (b) and R2 (d) for CNN compared with RF. N: the natural 
environment variables, N + NDVI: the natural variables and NDVI, N + Phen: the natural variables and phenology variables. 
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4.2. The optimal neighborhood sizes for CNN 

The evaluation results of the SOC prediction for Anhui province with 
different neighborhood sizes are shown in Fig. 6. It shows that the 
changing of RMSE and R2 with different environmental variable sets 
have different trends. The RMSE and R2 when using the natural envi
ronmental variables show a fluctuation with the increasing of neigh
borhood size, and the smallest RMSE with the highest R2 occurs in 
neighborhood size of 7 and 9. There is a large decrease in the RMSE or a 
large increase in R2 when the neighborhood size equals to 13 with the 
natural environmental and phenological variables. For the natural 
environmental and NDVIs, the RMSE increases slowly with the 
increasing of neighborhood size, the neighborhood size with the 
smallest RMSE or largest R2 is 3*3. Thus, we chose the neighborhood 
size of 7*7, 3*3, 13*13 for the natural environmental variables, the 
natural environmental variables and NDVI, the natural environmental 
and phenological variables, respectively. 

4.3. Comparisons of the evaluation results for CNN and RF 

The boxplots of RMSE and R2 of SOC prediction using CNN and RF, 
and the improvement of the average RMSE and R2 for CNN compared 
with RF using each group of environmental variables are displayed in 
Fig. 7. It suggests that the increase of the average prediction accuracy 
with CNN vs. RF is larger with more predictors. The decrease of the 
average RMSE for CNN when using both the natural environmental and 
phenology variables is 7.43% compared with RF, and the increase of the 
average R2 is 24.68%. 

The improvement of the average prediction accuracy (%) for CNN 
and RF using the other two groups of environmental variables compared 
with using only the natural environmental variables is shown in Fig. 8. It 
shows that adding either the phenology variables or NDVI into the 
natural environmental variables improves the prediction performance 
no matter using CNN or RF. The improvement of the average accuracy 
using the natural environmental and phenology variables is larger than 
that using the natural environmental variables and NDVIs. Furthermore, 
the improvement with CNN is larger than that with RF. 

5. Discussions 

5.1. Applicability and limitations of CNN 

CNN has a good learning ability when processing complex and large- 
volume input data due to that it is capable of modeling nonlinear 

relations (Tien Bui et al., 2020). Another advantage is that it leverages 
the spatial contextual information of predictors surrounding the sam
pling points (LeCun et al., 2015). This makes it suitable for modeling the 
soil-environment relationships because soil at a location is influenced by 
both the environmental conditions of this location and the surrounding 
locations. With more and more data available in a big data era, such as 
the land surface phenology data in our study, deep learning has a po
tential to be an effective soil prediction method. 

Our results suggested that the neighborhood size of input data 
exerted a strong influence on prediction accuracy, which is consistent 
with previous studies (Padarian et al., 2019; Wadoux, 2019). The 
neighborhood size was closely related to the amount of input contextual 
information. A suitable neighborhood size may relate to the scale that 
the environmental covariates impact the soil development. The scale 
effect of environmental covariates on soil prediction have been exam
ined (Smith et al., 2006; Shi et al., 2018). Their results indicated that 
appropriate scales matching the scales of soil property–landscape pro
cess would improve the soil mapping accuracy, and the appropriate 
scale for soil properties is different and very likely case-dependent. 

CNN also has some limitations. First, a reliable CNN model usually 
require a large amount of data for training. Correspondingly, high de
mand on the computing power is needed. Yet in case of insufficient input 
data, data augmentation is an alternative way to improve the model 
accuracy (Saleh and Hamoud, 2021). Second, several parameters are 
needed to be calibrated, and preventing overfitting should be paid at
tentions (Darwish et al., 2020). Also, it is not easy to interpret the neural 
network results (Lee et al., 2018). 

5.2. Model performance 

Although the phenological metrics improved the prediction accu
racy, the accuracy of our study is not high. A possible reason is the 
driving mechanism of environmental variables on SOC in this large area 
is complicated and varying over space. The sampling density of our 
study area is relatively small (5.24*10-3 per point/km2). Furthermore, 
most of the Anhui province is generally flat with croplands, where the 
variables such as terrain variables are probably not effective in DSM 
(Zhu et al., 2010). 

It is often that R2 of soil organic carbon/matter prediction in many 
previous studies was not larger than 0.5 because of the complicated 
interactions between soil and environmental variables (Wiesmeier et al., 
2013; Liang et al., 2019; Funes et al., 2019). Our prediction accuracy is 
consistent with the relevant studies, such as Wiesmeier et al. (2013) with 
a R2 of 0.21, and Funes et al. (2019) with R2 of 0.20–0.35. In the study of 

Fig. 8. The improvement of the average prediction accuracy (%) for CNN and RF using the two groups of environmental variables compared with using only the 
natural environmental variables. N + NDVI: the natural variables and NDVI, N + Phen: the natural and phenology variables. 
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Wadoux (2019), the R2 for SOC prediction with CNN was only 0.15. 
Their sample density was 0.36 per point/km2, much larger than ours. 

5.3. The phenology variables used for SOC prediction 

Our results showed that using land surface phenology parameters 
from the MODIS MCD12Q2 product improved the SOC prediction ability 
with CNN or RF. Long term phenological variables reflect a long time 
vegetation growth characteristics, resulting from interactions of soil 
impacted by land management over time. In turn, vegetation is a main 
source of carbon input for soil. This may explain the effectiveness of the 
phenology parameters in SOC prediction. 

The easy availability and long time series record of MODIS 
phenology metric product makes it a valuable environmental covariate 
for soil mapping at a regional or global scale. A similar product is the 
Suomi National Polar-Orbiting Partnership NASA Visible Infrared Im
aging Radiometer Suite (VIIRS) Land Cover Dynamics data product 
which provides global yearly phenological metrics from 2013. The VIIRS 
sensor is a long-term continuity of the MODIS land surface phenology 

data (Román et al., 2011; Zhang et al. 2018). The comparison of the 
MODIS and VIIRS products (Moon et al., 2019) suggests that pheno
metrics from the two products show only minor differences, but merging 
the two products should exploit their overlap period. Therefore, the 
future work using the two products together for SOC prediction should 
consider this. 

The 500 m resolution of this product may limit its applicability in soil 
mapping at a detailed scale. A possible way is to downscale the 
phenology metric product with coarse spatial resolution to detailed 
resolution data with data fusion methods (Zeng et al., 2020). 

5.4. The influential environmental variables for SOC variation 

In order to examine the influential environmental variables for SOC 
prediction, we generated the variable importance of the environmental 
variables for SOC variation based on random forest in Fig. 9, only the top 
30 variables are listed. It shows that the topographic and climatic var
iables are the most important variables impacting the spatial distribu
tion of SOC in Anhui, followed by the phenological variables. Only one 

Fig. 9. The variable importance of the environmental variables for SOC variation based on random forest, only the top 30 variables are shown. Acc10: Annual 
accumulated temperature above 10 ◦C, The number in the phenology or NDVI indicates its observation year, for example, Maturity_2007 means the maturity in 
year 2007. 
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annual mean NDVI occurs in the top 30 important variables. Slope ranks 
the first in Fig. 9, and annual precipitation, moisture index, and annual 
accumulated temperature above 10 ◦C are the three most important 
variables among the influential climatic variables. Maturity_2011, EVI- 
Amplitude_2012, EVI-Minimum_2011, greenup_2008, senescene_2014, 
maturity_2016, and EVI_area_2010, indicating different characteristics 
of vegetation growth, are the seven most important phenological vari
ables. It seems that there is no obvious rule that which variable or year 
plays a more important role among the phenological variables. This may 
indicate that variables representing different characteristics of the 
vegetation growth together are related to the SOC variation in Anhui. 

6. Conclusions 

A CNN model was developed for SOC prediction in Anhui province 
with three groups of environmental variables. Adding the long term 
MODIS MCD12Q2 land surface phenology parameters or annual NDVIs 
to the natural environmental variables improved the prediction accu
racy. The phenology variables obtained a lager accuracy improvement 
compared with NDVIs. In addition, the CNN obtained a higher predic
tion accuracy than RF regardless of using either group of variables. It 
suggests that the land surface phenology metrics indicating the long 
term vegetation growth characteristics could be effective or even better 
predictors for SOC prediction at a regional scale. Meanwhile, CNN could 
be a promising method for soil mapping in case studies with large data. 
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Tien Bui, D., Hoang, N.D., Martínez-Álvarez, F., Ngo, P.T.T., Hoa, P.V., Pham, T.D., 
Samui, P., Costache, R., 2020. A novel deep learning neural network approach for 
predicting flash flood susceptibility: A case study at a high frequency tropical storm 
area. Sci. Total Environ. 701, 134413 https://doi.org/10.1016/j. 
scitotenv.2019.134413. 

Vaudour, E., Gilliot, J.M., Bel, L., Lefevre, J., Chehdi, K., 2016. Regional prediction of soil 
organic carbon content over temperate croplands using visible near-infrared 
airborne hyperspectral imagery and synchronous field spectra. Int. J. Appl. Earth 
Obs. Geoinf. 49, 24–38. https://doi.org/10.1016/j.jag.2016.01.005. 

Wadoux, A.M.J.C., 2019. Using deep learning for multivariate mapping of soil with 
quantified uncertainty. Geoderma 351, 59–70. https://doi.org/10.1016/j. 
geoderma.2019.05.012. 

Wang, S., Adhikari, K., Wang, Q., Jin, X., Li, H., 2018. Role of environmental variables in 
the spatial distribution of soil carbon (C), nitrogen (N), and C: N ratio from the 
northeastern coastal agroecosystems in China. Ecol. Indic. 84, 263–272. https://doi. 
org/10.1016/j.ecolind.2017.08.046. 

Wiesmeier, M., Hübner, R., Barthold, F., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., 
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