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A B S T R A C T   

It is important to predict the spatial distribution of SOC accurately for migrating carbon emission and sustainable 
soil management. Environmental variables influence the accuracy of SOC prediction with digital soil mapping 
(DSM) approaches. In addition to the commonly-used natural predictors, remote sensing variables have been 
recently used in DSM. However, it is still challenging which variables are effective to predict SOC in farmland. 
Although phenological parameters have been recently used to indicate human activities that affect SOC in 
farmland, there are few studies that employ the phenological parameters in SOC prediction. Therefore, this study 
investigates the feasibility of SOC prediction with the phenological parameters and numerous remote sensing 
variables extracted from Sentinel-2 at high temporal and spatial resolutions. From 34 Sentinel-2 time series 
images from 2018 to 2019, 17 phenological parameters were extracted for Xuanzhou, Anhui Province using a 
dynamic threshold method. Furthermore, fifteen remote sensing predictors comprised of vegetation indices, 
bright-related indices, and moisture indices were generated from the Sentinel-2 images. The phenological pa
rameters and remote sensing variables were combined with natural variables to predict SOC contents at the 
surface soil layer using random forest. The results showed that the auxiliary parameters, i.e., the phenological 
parameters and remote sensing predictors, enhanced the predictability of SOC with an increase in R2 by 171% 
and a decrease in RMSE by 14%. This study also identified relatively more important auxiliary parameters for the 
SOC prediction: the largest data value for the fitted function during the season (a6), rate of increase at the 
beginning of the season (a8), large seasonal integral (a10), SATVI, and Band8. Therefore, this study verified that 
the phenological parameters and remote sensing predictors extracted from the Sentinel-2 EVI time series are 
effective for DSM in farmland.   

1. Introduction 

As the largest pool in the terrestrial ecosystem, soil carbon pool 
greatly affects the global carbon cycle (Lal, 2004; Wiesmeier et al., 2019; 
Hamzehpour et al., 2019). Soil organic carbon (SOC) plays an important 
role in determining soil quality and crop yield in farmland as it affects 
the biological, chemical, and physical processes in soils (McBratney 
et al., 2014; Lamichhane et al., 2019). Since the Industrial Revolution, 
however, SOC in farmland has significantly depleted by cultivation that 
induces emission into the atmosphere as an important source of atmo
spheric CO2 (Lal, 2004). Therefore, it is crucial to understand the spatial 
distribution of SOC or carbon stock in farmland due to its critical role in 
global carbon dynamics. Recently, many studies have paid attention to 

the accurate prediction of the spatial distribution of farmland SOC 
(Craig et al., 2015; Karunaratne et al., 2014; Khaledian and Miller, 2020; 
Minasny et al., 2013; Köchy et al., 2015). 

Digital soil mapping (DSM) has the advantages of high mapping ef
ficiency and low cost, which can make up for the shortcomings of 
traditional mapping methods,Therefore, DSM is widely used to estimate 
the spatial distribution of the SOC content (Camera et al., 2016; Jeong 
et al., 2017; Mcbratney and Santos, 2003; ; . DSM produces SOC maps 
mainly by the relationships between SOC and its environmental cova
riates with various approaches, such as geostatistical models (Xiangtian 
et al., 2020; Yang et al., 2017) or machine learning models (Sushil et al., 
2019). The performance of SOC prediction can be improved by not only 
developing advanced prediction models but also incorporating more 
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auxiliary environmental variables impacting the SOC spatial variation 
(Ottoy et al., 2017). 

Numerous environmental variables, including variables indicating 
climate, organisms, relief, parent lithology and land use, have been 
developed for SOC mapping (Gao et al., 2018; Sushil et al., 2019). As 
advances in the remote sensing (RS) technology, RS data has been 
increasingly used for SOC mapping (Vaudour et al., 2013; Mohammadi 
et al., 2016). Compared to traditional predictors, the available remote 
sensing bands data with high spatial resolution indirectly reflect the soil 
information (Vaudour et al., 2013; Forkuor et al., 2017). The commonly- 
used remote sensing predictors is mainly vegetation index, and few 
studies use bright-related indices (such as redness index) (Hu et al., 
2020; Marques et al., 2020), and moisture indices (such as land surface 
water index) (Zhou et al. 2016; Semeraro et al. 2019). However, the 
complex mechanism of the soil-vegetation systems makes it challenging 
what remote sensing variables are indicative to evaluate SOC in farm
land (Fabio et al., 2018; Fathololoumi et al., 2020; Asa et al., 2018). It is 
necessary to assess the utility of comprehensive remote sensing pre
dictors (i.e., vegetation index, bright-related indices and moisture index) 
in SOC mapping in farmland(Chen et al., 2019). 

In addition to the remote sensing variables, variables indicating 
human activities have been received attention for SOC mapping 
(Grunwald et al., 2011; Yang et al., 2020a). Human activities (fertil
ization, crop rotation, etc.) have a significant impact on SOC. For 
example, reasonable agricultural management measures may lead to an 
increase in the SOC content in farmland while decreasing by irrational 
agricultural management (Chen et al., 2018; Yang et al., 2020a). A few 
studies also concluded that the impact of these human activities on the 
SOC content in farmland may exceed those of the normal natural factors 
(Tong et al., 2014; Li et al., 2017b). However, it is difficult to investigate 
and quantify these human activities or their impact (Chen et al., 2020). 
The shortage of environmental variables that can characterize the 
impact of human activities on SOC limits the SOC mapping accuracy in 
farming areas. 

In recent years, several studies have been conducted on developing 
predictors to describe the impacts of human activity on SOC (Ratnayake 
et al., 2016; Nandan et al., 2019; Yang et al., 2020a; Xue et al., 2019). 
Nandan et al.,(2019) found that returning straw to the field can increase 
the content of soil organic carbon in farmland and increase soil fertility. 
Yang et al. (2019) employed Fourier decomposed variables extracted 
from Normalized Differences Vegetation Index (NDVI) time series data 
with crop rotation to map SOC in croplands. Yang et al. (2020) also 
extracted crop phenological parameters from HJ-1 A/B NDVI time series 
images to assess the impacts of agricultural activities in crop lands. 
Although the phenological parameters have been successfully incorpo
rated to estimate SOC in farmland, the mapping performance of 
extracting phenological parameters from other vegetation indices and 
other remote sensing data sources needs further study. Sentinel-2 has a 
potential to be an effective data source as it offers exceptional per
spectives on land with a combination of wide coverage (swath width of 
290 km) and minimum five-day global revisit-time (with twin satellites 
in orbit) (Van et al., 2014; Grinand et al., 2017). Furthermore, Sentinel-2 
provides higher spatial resolution images (20 m) and a smaller system 
error of atmospheric correction. NDVI is suitable for monitoring the 
early stage of crop growth, yet enhanced vegetation index (EVI) which 
has a better sensitivity to high biomass conditions (Vijith and 
Dodge-Wan, 2020; Wang et al., 2003; Fraga et al., 2014), may have a 
better ability for monitoring the growth status of crops. Therefore, this 
study employs the EVI time series from sentinel-2 images to study the 
effectiveness of phenological parameters in SOC mapping. 

Therefore, this study extracted phenological parameters and 
comprehensive remote sensing predictors from Sentinel-2 images. The 
main objectives of this study are: 1) to verify the utility of phenological 
parameters extracted from the Sentinel-2 EVI time series in Predicting 
SOC in farmland, 2) to identify the effective remote sensing predictors 
that improve the prediction accuracy of SOC in farmland, and 3) to 

evaluate the superiority of the SOC prediction driven by the phenolog
ical parameters and remote sensing predictors compared with the nat
ural predictors. 

2. Materials and methods 

2.1. Study area and sampling 

Xuancheng City (30◦33′~31◦19′N, 118◦28′~119◦4′E) and Langxi 
County (30◦49′~31◦18′N, 118◦59′~119◦23′E) in Anhui Province 
(Fig. 1). China are located in the transition zone between the southeast 
hills and the middle and lower reaches of Yangtze River. Cultivated 
lands in xuancheng and langxi were selected as a study domain that 
covers an area of 2552 km2. The southern part of the area is comprised of 
mainly mountains with an altitude between 500 m and 800 m. The 
middle part includes mostly hilly areas with an altitude between 50 and 
500 m, and the northern part is mostly a plain with an altitude below 50 
m. The study area has an annual average precipitation of 1429 mm 
under a subtropical monsoon climate. The main soil type in the study 
area is red soil while the main cultivated soil is paddy soil widely 
distributed in plains and hilly areas, accounting for 17.3% in this area. 

From the spring of 2018 to the fall of 2019, a comprehensive survey 
has been conducted by interviewing farmers and visiting soil fertilizer 
stations for collecting agricultural management measures such as crop 
varieties, planting methods, planting time, maturity time, rotation 
methods, fertilization status, and straw treatment methods. There are 
mainly two tillage methods in this area: subsoiling and rotary tillage. 
The depth of subsoiling is till to 25 cm, and the rotary tillage is deep to 
15 cm. Crops generally are fertilized twice during a growing season. 
Before the crops are planted, a basic fertilizer is added (basic fertilizer 
application: compound fertilizer is applied for about 375 kg/hm2 while 
150 kg/hm2 for urea fertilizer) (Zhang et al., 2019). 

The main rotation types in the study area are rice–wheat, rice-rape, 
single rice, and little rice-tobacco. The types of rice are determined by 
maturity time, i.e., early rice (sowing in april and harvesting in June), 
late rice (sowing in july and harvesting in late October), and middle rice 
between the early rice and the late rice periods. There are two ways to 
sow rice: direct seeding and seedling throwing. If the seeding time is 
sufficient, direct seeding is usually adopted while seedling throwing for 
other cases. Wheat is sown in November after rice and harvested in early 
June of the following year. The sowing times of oilseed in oilseed rice- 
rape rotation and wheat in rice–wheat rotation are slightly different as 
oilseed rape usually matures a week before wheat. The crop straws in 
this study area are returning to the field after harvest. 

In the fall of 2018, a total of 62 sampling points were collected in the 
study area through a random sampling strategy. For each location, five 
soil samples at a depth of 0–20 cm were collected from the four corners 
and the center in a 10 m × 10 m square area (Zhou et al., 2019). 

2.2. Overview of the methodology 

The flowchart is shown in Fig. 2. First, we generated the natural 
predictors, phenological parameters and three types of remote sensing 
predictors (including vegetation index, bright-related indices and 
moisture index). We grouped the different categories of predictors into 
four groups to verify the validity of phenological parameters and remote 
sensing predictors in SOC mapping. The four groups are, 1) only the 
normal predictors, 2) normal predictors and the remote sensing pre
dictors, 3) normal predictors and phenological predictors, and 4) normal 
predictors, phenological predictors, and remote sensing predictors. The 
importance of environmental variables in each group was then calcu
lated for SOC mapping, and the best combination of predictors in each 
group was obtained to compare their prediction accuracies. 
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2.3. Natural predictors 

The main natural environmental factors, including climate, terrain 
and parent materials, impact the spatial distribution of SOC. This study 
employed the following natural predictors: annual mean precipitation, 
annual mean temperature, elevation, slope, planform curvature, profile 
curvature, topographic wetness index (TWI), and parent lithology. All 
information of the natural predictors has a raster data format which is 
projected into the same coordinate reference system as WGS84-UTM. 
More detailed information is found in the following sections (2.2.1, 
2.22, and 2.2.3). As each data have different spatial resolutions, we 
resampled the raster data into a 90 m resolution using a nearest neighbor 
resampling method (Seidel et al., 2018) for a consistent data structure. 

2.3.1. Climatic variables 
The annual mean temperature and annual mean precipitation of the 

study area in 2015 (http://www.resdc.cn) were employed in this study 
as climatic variables (Landré et al., 2020). Based on the daily observa
tion data at bout 2,400 meteorological stations across the country, 
spatial maps (1 km resolution) of the national annual mean temperature 
and annual mean precipitation were produced by an interpolation 
technique (ANUSPLIN interpolation) which is a tool for analyzing and 
interpolating multivariate data using a smooth spline function (Hutch
inson, 1998). The units for the precipitation and temperature are 0.1 
mm and 0.1 ◦C, respectively. 

2.3.2. Topographic variables 
The topographic variables were derived from the digital elevation 

model (DEM) data generated from the Shuttle Radar Topographic 
Mission (SRTM) at 90 m resolution (http://srtm.csi.cgiar.org/srtmdata). 
The topographic variables were elevation, slope, planform curvature, 
profile curvature, and topographic wetness index (TWI) (Qin et al., 
2007). A terrain analysis software, DMapper (https://3d-mapper.com), 
was adopted. 

2.3.3. Parent lithology 
The parent lithology maps in this study area were generated from 1: 

500,000 Chinese geological maps. There are eight parent lithology types 

in this area: pyroclastic rocks, shale, sandstone, conglomerate, granite 
and granodiorite, limestone, quaternary clay-silt-gravel, quaternary 
vermicule boulder and grave clay (Grimm et al., 2008; 
Taghizadeh-Mehrjardi et al., 2014). 

2.4. Remote sensing predictors 

Remote sensing images mainly provide various soil information, e.g., 
mineral composition, soil moisture, organic carbon content, and soil 
texture, corresponding to different bands or combinations of bands. 
Therefore, multiple remote sensing predictors were generated to reflect 
the above soil information (Table 1), such as vegetation indices (sensi
tive to changes in organic matter content), moisture indices (sensitive to 
soil moisture) and bright-related indices (sensitive to soil texture) (Ben- 
Dor et al., 2002; Jin et al., 2017; Asa et al., 2018; Wang et al., 2018). 
With Sentinel-2 images in 2018, 18 remote sensing predictors were 
generated using the formulas as shown in Table 1 (Jin et al., 2017; Zhang 
et al., 2019). In order to reduce data redundancy and avoid the image 
cloud pollution (Ratnayake et al., 2016), crop growth information was 
extracted from the key time points (February 26, June 6, and November 
23) in 2018. All of the remote sensing predictors were generated on the 
three key time points. 

2.5. Sentinel-2 time series data and pre-processing 

The Sentinel-2 satellite carries a multispectral sensor (MSI) at an 
altitude of 786 km, which can cover 13 spectral bands and a width of 
290 km. The revisit cycle is 10 days for one satellite and 5 days for the 
other two satellites. The bands of Sentinel-2 have different spatial res
olutions (i.e. 10 m, 20 m and 6 0 m) from visible light and near-infrared 
to short-wave infrared (Castaldi et al., 2019). As only Sentinel-2 pro
vides optical image data with three bands in the red-edge range, it is 
very effective for monitoring vegetation health information (Zhou et al., 
2020). 

During the period from 12 January 2018 to 11 June 2019, thirty-four 
Sentinel-2 images, Level-1C product (Top of Atmosphere (TOA) reflec
tance), with less than 10% cloud contamination were selected to cover 
the two seasons of crop growth in the study area (Table 2), which are 

Fig. 1. The study area and soil samples.  
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available at the Copernicus open access hub. In addition, the down
loaded images were atmospherically corrected to obtain a Level-2A 
production (Bottom of Atmosphere (BOA) reflectance) using the Sen2
Cor processor (v.2.5.5), a plugin incorporated into the Sentinel Appli
cation Platform (SNAP) software. The standard Sen2Cor rural aerosol 
mode was selected for all images. The atmospherically corrected images 
were spatially resampled to 10 m to retain the information of Sentinel-2 
data to the greatest extent (Castaldi et al., 2019). 

Both of NDVI and EVI have been commonly used to generate 
phenological parameters (Peng et al., 2017; Testa et al., 2018). NDVI is 
usually saturated in high vegetation coverage areas due to its defect in 
eliminating atmospheric noise (Kaufman and Tanre, 1992; Li et al., 
2010). In addition, NDVI does not consider the impact of background 
soil noise, which may have an impact on the monitoring quality of crop 

growth information. However, EVI usually has a good atmospheric 
correction effect on the original data, resulting in avoiding the satura
tion problem of NDVI(Liu et al., 2017). EVI also has an advantage that 
reduces the effects of aerosol and soil background (Wang et al., 2003). 
Therefore, this study used the EVI time series constructed by the 
Sentinel-2 B2, B4, and B8 bands for monitoring the growth of crops in 
the study area. 

The EVI time series curve has usually fluctuated due to the effects of 
cloud pollution and noise, causing misrepresentations on crop growth 
information and subsequently affecting the reliability of phenological 
parameters (Testa et al., 2018). Therefore, this study applied a moving 
window weighted average algorithm, Savitzky-Golay filter, that 
smoothes the EVI time series value with a least-squares fitting (Jönsson 
and Eklundh, 2004; Li et al., 2017a; Mercier et al., 2020). In this study, 

Fig. 2. The flow chart of extracting phenological parameters and remote sensing variables for SOC mapping.  
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we adopted the Savitzky-Golay filter with two parameters, the moving 
window width = 1 and the order of the polynomial fitting = 2. 

2.6. The dynamic threshold method to extract phenological parameters 

Adopting a dynamic threshold method , phenological parameters 
were extracted (Jönsson and Eklundh, 2004; Cao et al., 2018). 
Compared to a fixed threshold method, the dynamic threshold method 
not only takes into account the change in a range of the vegetation index 
time series but also, to a certain extent, eliminates the effects of vege
tation types and soil background on phenological parameters (Cao et al., 
2018). 

Dynamic thresholds are defined by the EVI base level (a4) and the 
EVI maximum value (a6) within a length of the season (a3). The start of 
the season (a1) occurs when the left part of the fitted vegetation index 
curve has reached a specified range (a7) of the amplitude (between a4 to 
a6), counted from the base level. The end of the season (a2) is defined 
similarly on the right side of the curve as shown in Fig. 3. The dynamic 
threshold method was conducted by software timesat3.3 (Jönsson and 
Eklundh, 2004) to extract 17 phenological parameters during the 
growing season of crops. More detailed descriptions on the 17 pheno
logical parameters are found in Fig. 3 and Table 3. As combinations of 
phenological parameters in multiple seasons for one rotation type may 

Table 1 
The detailed descriptions of the remote sensing predictors.  

Classes Abbreviation Remote sensing Predictors Formula based on Sentinel-2 Reference 

Vegetation index NDVI Normalized Differences Vegetation Index B8 − B4
B8 + B4  

(Júnior et al. 2019) 

GNDVI Green Normalized Difference Vegetation 
Index 

B8 − B3
B8 + B3  

(Zhou et al. 2016) 

TVI Transformed Vegetation Index (
B8 − B4
B8 + B4

+ 0.5
)1/2

× 100  
(Bagheri, 2020) 

EVI Enhanced Vegetation Index 2.5×
B8 - B4

B8 + 6 × B4 - 7.52 × B2 + 1  
(Rezzouk et al. 2019) 

SATVI Soil Adjusted Total Vegetation Index B11 - B4
B11 + B4 + 1

× (1+ 1) −
B12

2  
(Villarreal et al. 2016) 

SAVI Soil Adjusted Vegetation Index (B8 - B4) × (1 + 0.5)
B8 - B4 + 0.5  

(Venancio et al. 2019) 

GRVI Green-Red Vegetation Index B3 - B4
B3 + B4  

(Tucker, 1979) 

RVI RatioVegetationIndex B8
B4  

(Ren and Zhou, 2019) 

MSAVI2 Second Modified Soil Adjusted Vegetation 
Index 

2 × B8 + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2 × B8 + 1)2
− 8 × (B8 − B4)

√

2  

(Mahmood et al. 
2016) 

Bright-related 
index 

BI Brightness Index ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(B4 × B4) + (B3 × B3)

√

2  
(Escadafal, 1989) 

BI2 The Second Brightness Index ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(B4 × B4) + (B3 × B3) + (B8 × B8)

√

2  
(Escadafal, 1989) 

RI Redness Index B4 × B4
B2 × B3 × B3 × B3  

(Mathieu et al. 1998) 

CI Colour Index B4 - B3
B4 + B3  

(Pouget et al. 1991) 

Moisture index LSWI Land Surface Water Index B8 - B11
B8 + B11  

(Semeraro et al. 2019) 

MSI Moisture Stress Index B11
B8  

(Rock et al. 1985) 

B6 Vegetation red band Sentinel-2 Band6resolution: 10 m, central wavelength: 740 nm (Vaudour et al. 2019) 
B8 Near infrared band Sentinel-2 Band8resolution: 20 m, central wavelength: 842 nm (Castaldi et al., 2019) 
B11 Short wave infrared Sentinel-2 Band11resolution: 10 m, central wavelength: 1610 

nm 
(Castaldi et al. 2016)  

Table 2 
The date of the Sentinel-2 Time Series data in 2018 and 2019 (images with * were in 2019).  

NO. 1 2 3 4 5 6 7 8 9 10 11 12 

Date 01–12 02–11 02–26 03–13 03–23 03–28 04–07 04–17 04–27 06–06 06–11 07–26 
DOY 12 42 57 72 82 87 97 107 117 157 162 207 
NO. 13 14 15 16 17 18 19 20 21 22 23 24 
Date 07–31 08–05 08–20 08–30 09–04 10–04 10–19 10–24 10–29 11–23 12–13 12–18 
DOY 212 217 232 242 247 277 292 297 302 327 347 352 
NO. 25 26* 27* 28* 29* 30* 31* 32* 33* 34*   
Date 12–23 01–17 01–22 01–27 02–06 03–13 04–07 04–17 05–22 06–11   
DOY 357 382 387 392 402 437 462 472 507 527    

Fig. 3. Illustration of phenological parameters (a1 to a11) , revised according 
to(Jönsson and Eklundh, 2004). 
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also reflect characteristics that represent crop growth, these composite 
phenological indices can be potentially effective indicators for crop 
growth and soil. In this study, four composite phenological indices (c14, 
c15, c16, c17) were generated from the 13 phenological parameters 
during two seasons. As the single season rice is not unified with other 
rotation, the first season phenological parameters were mainly used for 
SOC prediction (Zeng et al., 2019). 

2.7. Random forest for SOC prediction 

We used a machine learning method, Random Forest (RF), to eval
uate the importance of environmental variables and to predict SOC 
content (Yang et al., 2016; Marcela et al., 2016). RF integrates multiple 
decision trees that reflect the random selection of samples and features 
(Breiman et al., 2001). Random forests generally converge to lower 
generalization errors as the number of decision trees increases. In the RF 
model, the data are classified into in-bag data and out-of-bag (OOB) 
data. The “in-bag” samples selected by the bootstrap approach were 
used for model training (Grimm et al., 2008; Heung et al., 2014) while 

the OOB samples were used to estimate general errors for validating a 
developed model. 

RF has been actively applied as an effective model for predicting soil 
properties or soil types (Grimm et al., 2008; Yang et al., 2016) and for 
DSM (Wang et al., 2018) as it can evaluate the importance of individual 
features in classification problems. RF mainly needs two parameters to 
develop a prediction model: the number of regression trees (ntree) and 
the number of randomly selected variables at each node (mtry). 

In this study, we adopted a recursive feature elimination (RFE) al
gorithm based on RF to select the most accurate combination of vari
ables for each group of environmental covariates. RFE identifies a subset 
of environmental covariates that significantly contributes to target 
variables, avoids the redundancy of the subset of variables, and subse
quently produce the best predictive performance. The procedures of 
using RFE algorithm are as follows:  

a. Train a random forest.  
b. Calculate the relative importance of candidates among all of the 

environmental variables.  
c. Eliminate the least important variables based on their ranking of 

importance.  
d. Repeat steps 1 to 3 until a subset of the best predictive performance 

variables is found. 

Environmental variable importance is recalculated in each cycle, the 
ranking of the variables is consistent with their importance in the cur
rent forest. After each cycle of eliminate the least important variables, 
the variable importance and the prediction accuracy of the SOC content 
will change (Gazzola and Jeong, 2019; Genuer et al., 2010; Shi et al., 
2018). 

The accuracy using the most accurate combination of variables for 
each group was compared to validate how effectiveness of adding the 
pheonological parameters or/and remote sensing variables into the 
natural variables. 

2.8. Assessment of prediction results 

A leave-one-out cross-validation was adopted to train the random 
forest model and validate the prediction results. We used the following 
measures, the mean absolute error (MAE), root mean squared error 
(RMSE), coefficient of determination (R2) and Lin’s concordance cor
relation coefficient (LCCC) (Chen et al., 2019), to evaluate the predic
tion performance of the random forest models with the four groups of 
environmental variables. The formulas of the validation indices are as 
follows: 

MAE =
1
n
∑n

i=1
|Pi - Oi| (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Pi − Oi)

2

√

(4)  

R2 = 1 −

∑n

i=1
(Pi − Oi)

2

∑n

i=1
(Oi - O

\_
)

2
(5)  

LCCC =
2rσoσp

σ2
o + σ2

p + (P - O)
2 (6) 

where Pi and Oi are the predicted and observed SOC values at the 
time i, respectively; n is the number of total samples; P and O are the 
mean values of the predicted and observed SOC, respectively; r is the 
Pearson correlation coefficient between the predicted and observed 
SOC; σP and σO are the standard deviations of predicted and observed 
SOC, respectively. 

Table 3 
17 phenological parameters extracted from a single growing season of crops 
using timesat 3.3.  

No. Parameters Description Unit 

a1 Starting time of a 
season 

The time when data increases to a 
user-defined value 

Day of year 

a2 Ending time of a 
season 

The time when data falls to the 
user-defined value 

Day of year 

a3 Length of a season Difference between time for the end 
of the season and time for the start 
of the season 

Number of 
days 

a4 Base level The average of the minimum values 
on the left and right sides of the 
curve 

EVI unit 

a5 Mid-time of a season The average of the two times 
corresponding to the data at 80% 
on the left and right sides of the 
curve 

Day of year 

a6 Maximum value of a 
season 

Maximum data in a growing season 
curve 

EVI unit 

a7 Seasonal amplitude Difference between the largest data 
value for the fitted function during 
the season and the base level 

EVI unit 

a8 Increase rate at the 
beginning of a season 

The ratio of the data difference of 
80% and 20% on the left side of the 
curve to the corresponding time 
difference 

(EVI unit) 
/(time unit) 

a9 Decrease rate at the 
end of a season 

The ratio of the data difference of 
80% and 20% on the right side of 
the curve to the corresponding time 
difference 

(EVI unit) 
/(time unit) 

a10 Large seasonal 
integral 

The integral of the data of curve 
function in length of the season (h 
+ a11). 

(EVI unit) * 
(time unit) 

a11 Small seasonal 
integral 

The integral of the difference 
between the curve function data 
and the base level value in the 
length of the season 

(EVI unit) * 
(time unit) 

a12 Value at the starting 
time 

The data corresponding to the 
curve function at time for the start 
of the season 

EVI unit 

a13 Value at the ending 
time 

The data corresponding to the 
curve function at time for the end of 
the season 

EVI unit 

c14 Base seasonal 
integral 

Difference between a10 and a11 in 
the same growing season. 

(EVI unit) * 
(time unit) 

c15 Complement of small 
integrals 

Subtract a11 from Product of a3 
and a7. 

(EVI unit) * 
(time unit) 

c16 Triangle season 
integral 

The average of growing time length 
(a3) and growing season amplitude 
(a7). 

(EVI unit) * 
(time unit) 

c17 Time average of 
integral 

Integral of the function over growth 
time divided by growth time (a3) 

(EVI unit)  
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2.9. Uncertainty analysis 

For SOC mapping, random forest using the optimal combination of 
environmental variables was run a hundred times and the average of the 
100 times was used as the final prediction. We calculated the standard 
deviation of each raster pixel based on the 100 SOC maps generated and 
used the spatial variation of standard deviation to represent the pre
diction uncertainty (wang et al., 2020; zhou et al., 2021). 

3. Results 

3.1. Descriptive statistics of the topsoil organic carbon content 

The statistics of the organic carbon content in topsoil for the different 
types of crop rotations are presented in Table 4. The highest SOC content 
appeared in rice–wheat rotation, followed by Double rice while rela
tively lower SOC content in rice-rape. Such result indicates that SOC is 
influenced by fertilization and management in response to crop rotation 
types. The lowest SOC content occurred in the other crop rotations that 
include two sampling points with rice-tobacco rotation and one with 
corn as a crop. 

3.2. The extracted phenological parameters 

The 17 phenological parameters of the crop in a growing season were 
extracted for the study area. Table 5 shows the 17 phenological pa
rameters of rice in the rice-rape rotation in 2018, Table 6 is the statistical 
data of the 17 phenological parameters. The first 13 phenological pa
rameters (a1 to a13) in Table 5 were extracted by the dynamic threshold 
method while the last four parameters (c14-c17) are the composite 
phenological indices. For the rice, sowing in early June and harvesting 
in mid-October, the accuracy of the extracted phenological parameters 
were validated by the field survey of crop phenology observation data 
and the absolute error of start and end time of the season was about 5 
days. This indicates that the accuracy of the extracted phenological 
parameters was satisfactory to be used for the SOC prediction and 
assessment. The standard deviations of a10 and a11, characterizing the 
growth process of crops, were 35.63% and 47.44%, respectively, indi
cating a large heterogeneity in rice growth within the study area. 

The spatial distribution of three phenological parameters (a6, a8, 
and a10) is shown in Fig. 4 as examples. The three parameters show 
different spatial patterns. The spatial distribution map of the EVI 
maximum value of a season is shown in Fig. 4.a. The upper left corner of 
the study area has a lower a6 (the maximum EVI value of the first sea
son), which is due to lots of ponds for breeding crabs transformed from 
farming areas exist in this area. There are some other areas with lower 
maximum EVI which probably due to the different crop rotation, such as 
rice-rape, or the abandoned arable land. Fig. 4.b is the increase rate at 
the beginning of a season from seedling to maturity of crops (a8). The 
greener the area in the figure, the faster the increase rate. The standard 
deviation of the increasing rate is 0.08. Fig. 4.c is the integral of EVI of 
crops in growth time (a10). The standard deviation of a10 is 0.31, which 
shows different characteristics caused by different crops/crop rotation. 

3.3. The relative importance of the environmental variables in each group 

The relative importance of environmental variables may vary with 
groups investigated in this study. The environment variables selected by 
the RFE approach for each group were shown in Table 7. Fig. 5 shows the 
ranking of the importance of the variables listed in Table 7. In the first 
group, the temperature was ranked first, followed by TWI. Among the 
phenological parameters and remote sensing predictors, near-infrared 
(Band8), short-wave infrared (Band11), Soil Adjusted Total Vegetation 
Index (SATVI), the maximum EVI (a6), the increase rate at the beginning 
of the season (a8), large seasonal integral (a10) were relatively ranked 
higher, indicating that the remote sensing predictors and phenological 
parameters selected in this study play an important role in DSM. 

3.4. The prediction accuracies of different environment variable groups 

The performance measures obtained by the cross-validation for the 
four groups are presented in Table 8. The predicted and measured values 
of the SOC in the four environmental variable combinations are shown 
in Fig. 6. Although the R2 of all the groups are not high (the points in the 
scatterplots are not very close to the 1:1 line in Fig. 6.), the R2 gradually 
increased with the addition of remote sensing variables and phenolog
ical parameters. Considering group 1 as a base-line, the validation re
sults show that the phenological variables and the remote sensing 
predictors provide added-values in DSM. In particular, the phenological 
parameters showed a slightly more contribution to improving the pre
diction accuracy. Moreover, group 4 that combines the phenological 
variables and the remote sensing predictors performed the best among 
the four groups. Such results indicate that, along with the natural vari
ables, incorporating auxiliary variables (i.g., remote sensing predictors 
and the three phenological variables can enhance the performance in the 
SOC prediction. Compared with the first group (only natural variables), 
group 4 improved RMSE, MAE, R2, and LCCC by 13%, 15%, 171%, 52%, 
respectively. Besides, we noted from Fig. 6 that random forest over
estimated the low SOC content and underestimated the high SOC con
tent. This is mainly due to the small number of samples with high and 
low SOC content. 

3.5. The predicted map of SOC and its uncertainty 

We generated 100 SOC maps with the optimal environment variables 
in group 4, and the average of the 100 predictions was used as the final 
result (Fig. 7.a). The standard deviation of the 100 predicted SOC con
tent at each raster pixel was calculated to express the prediction un
certainty, shown in Fig. 7.b. It shows that the areas with wheat-rice and 
double rice have higher predicted SOC content while other areas have 
lower predicted SOC. This shows that the SOC is related with the crop 
rotations because crop rotations determine the returning straw volume, 
fertilization quantity, and tillage style(Edmondson et al., 2014; Grimm 
et al., 2008; Zeng et al., 2019). The average standard deviation value of 
the farming area is 0.17, showing a good stability of the model. The 
higher standard deviation is observed in the upper left corner, some 
areas in the middle plain valley, and areas in narrow valleys in south 
hills with very few samples. This map could guide the future sampling to 
reduce uncertainty. 

Table 4 
Descriptive statistics of SOC content for different crop rotations.  

Crop rotations Sample number SOC min (g/kg) SOC max (g/kg) SOC mean (g/kg) Standard deviation Coefficient of variation (%) 

Single cropping rice 28 7.30 20.35 13.97 3.29 23.52 
Rice -wheat 13 11.05 18.62 14.85 2.48 16.71 
Double rice 10 4.59 20.65 14.17 4.49 31.68 
Rice-rape 8 9.19 21.92 13.00 3.93 30.20 
other 3 8.89 13.31 10.65 2.34 22.00  
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4. Discussion 

4.1. Applicability using remote sensing predictors and phenological 
predictors in mapping SOC 

It was proved that the remote sensing predictors, SATVI, Band8, and 
Band11, played an important role in improving the SOC prediction. 
Among them, SATVI with a parameter (L) that normalizes the effect of 
bare soil is sensitive to both green and senescent vegetations. In 
particular, SATVI can effectively reflect the change in green coverage of 
crops (Villarreal et al., 2016; Campos et al., 2018). Sentinel-2 Band8 
(near-infrared) and Band11 (short-wave infrared) are sensitive to soil 
moisture. Near Infrared is used not only to effectively monitor crop 

growth and soil moisture but also to distinguish between healthy and 
diseased crops (Van et al., 2016). Short-wave infrared used to distin
guish bare soil, water, and different crops has a good ability to penetrate 
clouds (Da Silveira et al., 2018; Zhou et al., 2020). Near-infrared and 
short-wave infrared bands have been used to extract vegetation growth, 
cover, and biomass and consequently have been selected as key vari
ables for predicting SOC in previous studies. For example, Bian et al. 
(2019) found near-infrared and short-wave infrared bands are effective 
predictors for mapping SOC in the coastal areas of Northeast China (Van 
et al., 2016; Asa et al., 2018; Castaldi et al., 2019). This study also 
demonstrates that SATVI, Band8, Band11, and other remote sensing 
predictors are effective predictors for the SOC prediction in farmland. 

When incorporating phenological parameters into the SOC predic
tion by the random forest approach, the largest data value for the fitted 
function during the season (a6), the increase rate of at the beginning of 
the season (a8) and the large seasonal integral (a10) were selected as the 
important predictors, especially a8 ranked the first in group 3. Incor
porating these auxiliary variables with the commonly-used natural 
predictors provided considerable added-values in the SOC prediction. 
Such results may be explained by biological mechanism aspects. There 
are mainly two stages in the growth process of crops: 1) vegetative 
growth stage and 2) reproductive growth stage (Akir, 2004). The 
vegetative growth stage represents the period from seed germination to 
young spike differentiation when roots, stems, and leaves are growing. 
During this stage, organic matters are accumulated in crops as a material 

Table 5 
The17 phenological parameters of rice in rice-rape rotation.  

NO. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 c14 c15 c16 c17 

1 158.90 276.40 117.50 0.09 219.40 0.76 0.67 0.27 0.20 4.38 3.60 0.14 0.24 2.10 71.02 100.43 1.01 
2 159.30 283.75 124.45 0.14 219.85 0.79 0.65 0.26 0.19 5.04 3.59 0.22 0.25 3.62 50.64 82.37 1.05 
3 157.90 282.10 124.20 0.04 225.40 0.81 0.77 0.30 0.25 4.87 4.43 0.04 0.23 1.11 78.97 120.50 1.07 
4 157.80 284.05 126.25 0.08 224.95 0.72 0.64 0.55 0.28 4.67 3.84 0.06 0.23 2.07 59.76 102.93 1.06 
5 157.00 268.60 111.60 0.13 214.50 0.78 0.65 0.37 0.16 4.83 3.49 0.14 0.27 3.34 63.30 95.76 1.15 
6 157.20 286.45 129.25 0.12 225.10 0.71 0.59 0.23 0.16 4.72 3.54 0.06 0.29 2.84 66.16 83.38 0.90 
7 158.40 277.30 118.90 0.12 219.55 0.65 0.53 0.22 0.16 4.31 3.06 0.14 0.26 3.12 42.47 88.17 1.09 
8 157.60 286.30 128.70 0.11 222.85 0.59 0.48 0.16 0.17 3.86 2.71 0.16 0.14 2.86 71.11 79.06 0.79  

Table 6 
Descriptive analysis of the 17 phenological parameters in Table 5.   

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 c14 c15 c16 c17 

Min 61.2 198.0 103.2 0.0 149.4 0.6 0.4 0.1 0.0 1.7 1.0 0.0 0.1 0.5 6.3 25.3 0.4 
Max 169.2 319.8 196.8 0.2 244.8 1.0 0.9 0.7 0.7 6.7 5.7 0.3 0.4 4.6 99.4 120.5 1.2 
Mean 141.7 271.9 130.2 0.1 209.9 0.7 0.6 0.3 0.2 4.4 3.2 0.1 0.2 2.0 46.7 62.0 0.8 
Std 28.1 35.0 16.3 0.0 27.6 0.1 0.1 0.2 0.2 1.2 1.2 0.1 0.1 0.9 24.3 26.6 0.2 
Cv (%) 19.9 12.9 12.5 33.0 13.1 12.3 18.9 55.8 75.0 26.3 36.1 50.6 25.3 44.3 52.2 42.9 28.5 

Note:min: minimum, max : maximum, std : standard deviation, cv : Coefficient of variation. 

Fig. 4. The spatial distribution map of phenological parameters and field survey pictures (a): a6, EVI maximum value of a season. (b): a8, Increase rate at the 
beginning of a season (c): a10, Large seasonal integral. 

Table 7 
Environment variables selected in this study for optimal cartographic accuracy.  

Group Environment variables 

1 temperature, twi, elevation, slope, profile curvature, parent lithology 
2 temperature, twi, elevation, slope, M6band11, M11band11, M6band8, 

M11SATVI 
3 temperature, elevation, slope, profile curvature, a3, a6, a8, c15 
4 temperature, slope, elevation, M6band11, M11band11, M6band8, 

M11SATVI, a6, a8, a10 

Note:The number after ‘M’ in names of the remote sensing predictors represents 
the month in 2018. 
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basis for the reproductive growth stage. The young spike differentiation, 
when the stems and leaves of young spikes grow simultaneously, is a 
period of vegetative growth and reproductive growth(Xu et al., 2019). 
After heading, crops will flower, pollinate, fill, and bear fruits, which is 
the reason that this stage is called reproductive growth(Cheabu et al., 
2018). The vegetative and reproductive growth of crops is affected by 
various factors such as moisture, fertilizer, soil, and variety. The rate of 
increase at the beginning of the season (a8) is significantly influenced 
during the vegetative growth period by the growth rate of crops that is 
related to the SOC content (Rudnick et al., 2017; Cheabu et al., 2018; Si 
et al., 2020). The more accumulation of SOC, the higher the crop growth 
rate. The largest data value for the fitted function during the season (a6) 
usually reflects the highest growth density of crops during the 

reproductive growth period. Crop chlorophyll undergoes photosynthesis 
and absorbs red light to reflect near-infrared(Möller et al., 2017). 
Therefore, more near-infrared light indicates the crops in farmland 
absorb more red light, resulting in a higher crop growth rate densely 
throughout the growth cycle. Consequently, the growth density of crops 
includes information on the content of SOC. The large seasonal integral 
(a10) represents the integral of the EVI value over the growing time of 
the crop (Attila et al., 2018), which describes the life cycle character
istics of the vegetative and reproductive stages of crops(Jiang et al., 
2018; Padilla et al., 2017; Saikia et al., 2019) . 

It is noteworthy that the phenological parameters used in our study 
were extracted from EVI time seriers data while there are other ways to 
produce the phenological parameters such as unmanned aerial vehicle 
(UAV) (Yang et al., 2020b) images and digital camera monitoring 
(Alberton et al., 2017). 

4.2. Model performance 

Farmland is usually plain areas or with gentle terrain condition. 
Those widely-used predictors such as topographic variables may be too 
homogenous to map soil variations effectively (Liu et al., 2012; Zeng 
et al., 2017). Thus, it is often that the SOC mapping accuracy is not high 
in farmland (Nandan et al., 2019; Wu et al., 2021). In addition, the low 
sampling density is also a possible reason of the prediction accuracy , i.e. 

Fig. 5. Variable importance ranking of different environmental variable groups.  

Table 8 
Performance measures for the four groups investigated in this study.  

NO. Environment Variable Groups MAE RMSE R2 LCCC 

1 Natural predictors 2.68 3.25 0.14 0.29 
2 Natural predictors, remote sensing 

predictors 
2.53 3.01 0.27 0.37 

3 Natural predictors, phenological 
predictors 

2.39 3.00 0.28 0.36 

4 Natural predictors, remote sensing 
predictors, phenological predictors 

2.29 2.83 0.38 0.44  
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only 62 samples collected at a regional scale (0.024 point/km2) (Guo 
et al., 2018). The SOC prediction accuracy with a highest R2 of 0.38 in 
our study is similar with the studies of Ahikari et al. (2014), Zhao et al. 
(2014), and Liang et al. (2019), and higher than other SOC mapping 
studies in farmland, for example, the R2 of Wiesmeier et al. (2019) is 

0.21, and the R2 of Funes et al. (2019) is 0.20–0.35. For the SOC pre
diction in the same area, the maximum R2 (0.38) of the prediction ac
curacy in this study is slightly higher than the R2 (0.37) of Zeng et al. 
(2016) with a Mixed Geographically Weighted Regression (MGWR) 
method. Although the prediction accuracy is smaller than Yang et al., 

Fig. 6. The scatterplots of the measured against predicted SOC (g/kg) for group 1 (Natural predictors), group 2 (Natural and, remote sensing predictors), group 3 
(Natural and phenological predictors), group 4 (all predictors). 

Fig. 7. The predicted SOC and uncertainty maps with the most accurate combination of environmental variables in group 4.  
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(2020) in the same study area which used samples collected in 2010 , 
our study obtained a similar conclusion that adding phenological par
amerts increased the mapping accuracy. In addition, our study explored 
which remote sensing predictors work in SOC mapping in farmland. 

4.3. Limitations and future perspectives 

This study found the two main components that may affect the ac
curacy of phenological parameters extracted from EVI. Firstly, the time 
interval of the Sentinel-2 time-series images used in this study was not 
equidistant, which may cause inconsistency in the extraction accuracy of 
the phenological parameters (Yang et al., 2020a). The other reason is the 
effects of cloud pollution in the Sentinel-2 images in May of 2018, which 
is critical to accurately extract the key growth information about early 
rice, rape, and wheat. However, there is no alternative to be used during 
this period. Therefore, it is necessary to integrate multi-sources remote 
sensing data to resolve these limitations in future works. 

In this study, four compound phenological parameters were intro
duced to reflect the phenological characteristics between two individual 
seasons. The complement of small integrals (c15) was selected as an 
important predictor. However, it is necessary to introduce more com
pound phenological parameters to comprehensively extract the pheno
logical characteristics. For example, the periodic growth law of crops in 
the time series during a longer time period can be extracted through the 
model (Zhu et al., 2018; Zhao et al., 2019) to be used as an environ
mental variable for DSM. 

5. Conclusion 

This study evaluated the utility of phenological parameters and 
remote sensing predictors extracted from the Sentinel-2 data for the SOC 
prediction in farmland. The results showed that the phenological pa
rameters improved the performance in the accuracy of SOC prediction. 
Among them, this study identified the most important phenological 
predictors for topsoil SOC content: the largest data value for the fitted 
function during the season (a6), rate of increase at the beginning of the 
season (a8) and large seasonal integral (a10). Regarding the remote 
sensing predictors, near-infrared (Band8), short-wave infrared 
(Band11), and Soil Adjusted Total Vegetation Index (SATVI) were 
ranked higher and provide higher added-values in the SOC prediction. 
This study also intercompared the performance for the four groups ac
cording to the combinations of natural, phenological parameters, and 
remote sensing predictors. Among them, group 4 that incorporates all of 
the natural, phenological, and remote sensing predictors performed the 
best, which improved the performance measures, R2 by 171%, LCCC by 
52%, RMSE by 13% and MAE by 15%. Therefore, this study proved that 
the phenological parameters and remote sensing predictors extracted 
from the Sentinel-2 images can enhance the ability in SOC mapping in 
agricultural areas. 
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