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ABSTRACT
All too often, it is unclear whether digital soil mapping (DSM) models can support causal interpretation. A common practice in 
DSM studies is to interpret the importance of covariates for prediction. This carries an implicit causal assumption that is rarely 
stated and even more rarely justified. Because DSM relies entirely on observational data, it is widely assumed that causal infer-
ence is not possible. But is it? Here, we discuss the conditions under which causal inference with observational data is possible 
and two views of causality. We show that while under each of the views causal inference may be possible, a so-called generative 
view is the one most capable of satisfying the conditions for causal inference in DSM. Generative causality treats causation as 
the system of processes that produce observed associations, rather than relying on associations themselves, as is common in cur-
rent DSM studies. Realizing this perspective requires DSM to shift towards models in which soil-forming factors influence soil 
properties through explicitly modelled processes, which some would call process-informed DSM. Since these processes are ‘fully 
determined’ by the modeller's specification, they offer a structured means to control confounding and open the door to applying 
existing causal inference frameworks. While generative DSM is formally possible, we should ultimately ask whether causal in-
ference ought to be a primary goal, since the primary strength of DSM lies not in establishing causality but in delivering accurate 
predictions and highlighting patterns that warrant further investigation.

1   |   Introduction

Digital soil mapping is the practice of predicting soil properties 
or classes at places where they have not been measured. This 
is commonly done with statistical modelling of the spatial cor-
relation between locations, as is done in geostatistical modelling 
and prediction with kriging, and by relating those properties to 
spatially exhaustive covariates through statistical or machine-
learning models. The covariates may include elevation, vegeta-
tion, climate and others that serve as proxies for the factors of 
soil formation: parent material, relief, climate, organisms and 
time. The idea is not new. More than 80 years ago, Jenny (1941) 
argued that particular combinations of these factors give rise to 
processes creating a particular soil. This was expressed through 
a relationship in the form of a deterministic regression.

Without moving away from associational structure between 
covariates and soil properties, pedometrics has long recognized 
that soil is too complex to be modelled in a fully deterministic 
way. We cannot describe all the factors, nor all the processes, 
their interactions and their changes through time. While in 
principle soil formation is deterministic, in practice we must 
regard at least part of the soil variation as if it were the out-
come of a random process (Webster  2000). This variation is 
not necessarily unstructured and information can be extracted 
with an appropriate statistical model. This practice aligns with 
Hempel (1965)'s notion of statistical-inductive explanation: nat-
ural laws are deterministic, yet when initial conditions cannot 
be fully specified, explanations and predictions can be expressed 
probabilistically (i.e., using a statistical-inductive explanation, 
see Wadoux et al. 2021).
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To this end, a common procedure in DSM is to find the model 
and association with covariates that best predict the soil prop-
erty of interest, as judged by some measure of fit. When the 
model is validated, that is, when it is well explained by probabili-
ties under statistical laws, we then look for a physical cause of its 
success. In practice this means interpreting the most important 
covariates. For example, Gomes et al. (2025) mapped potential 
soil water repellency of Danish topsoil with a machine learning 
model fitted to 7500 measurements. The accurate predictions, 
as assessed by cross-validation, led the authors to examine the 
effect that the covariates, such as some soil properties and re-
mote sensing indices, had on the outcomes using variable im-
portance metrics. While in DSM we have long cautioned against 
interpreting correlations found in the model as causal (Wadoux 
et al. 2020), there is, in many studies, an implicit causal assump-
tion that is rarely stated yet justified in the analysis. All too 
often, we actually do not know if the DSM model can support 
causal interpretation.

Hereafter, we examine current DSM practices based on obser-
vational data and outline the conditions under which causal 
inference might be possible. We then situate these current 
practices within a successionist view of causality and con-
trast this with a generative view. Both perspectives are then 
explored to clarify their implications for making causal infer-
ence in DSM studies.

2   |   Observational Data in Digital Soil Mapping

DSM relies almost exclusively on observational data, that is, 
data collected from field surveys and soil inventories, rather 
than from controlled experiments. It is widely accepted that 
observational data alone do not support causal inference (Yuan 
et al. 2017; Byrnes and Dee 2025). Confounding factors may in-
fluence both covariates and soil properties, and the timing or 
sequence of events is unknown. Further, soil measurements 
and observations capture only a snapshot emerging from a com-
plex, dynamic system, without clear temporal sequencing. This 
makes it impossible to understand which variable precedes the 
other. If we apply this logic, no DSM study can be causal.

Take as an example Figure 1 which illustrates some relationships 
found in a global soil dataset (Batjes et  al.  2024). We examined 
temperature (T), vegetation (V) and soil organic carbon (S; SOC). 
While V is positively correlated with T (Figure 1a), and S is posi-
tively correlated with V (Figure 1b), the direct relationship between 
T and S can appear negative globally (Figure 1c), while positive and 
negative correlations also appear depending on which variables or 
regions are considered (Figure 1d,e). Controlling for V reveals a 

Highlights

•	 Implicit causal assumption is usually made in digital 
soil mapping.

•	 Digital soil mapping can support causal inference if 
some conditions are met.

•	 A generative view is the one most capable of satisfying 
the conditions for causal inference in DSM.

•	 Strength of digital soil mapping lies primarily in its 
predictive capacity.

FIGURE 1    |    (a–c) Relationships among T (temperature), V (enhanced vegetation index, EVI) and S (soil organic carbon stock). (d) The T–S rela-
tionship reverses: Within each V level (six groups from 0 to 0.6 with an interval of 0.1), it is negative, but averaging across groups produces a positive 
trend, illustrating Simpson's paradox. (e) T–S relationships vary widely across ecoregions (each line shows the regression for one ecological region).
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negative T–S relationship within each subset, but aggregating the 
data shows a positive trend, a clear example of Simpson's paradox 
(Figure  1d). Stratifying by ecoregion produces yet more diverse 
T–S patterns (Figure 1e). These results show that observed associ-
ations are confounded by unmeasured factors and are influenced 
by data partitioning. The variability of statistical relationships in-
dicates the risk of misjudgement of true causal relationships can 
be hard to spot. Associations from observational data can mislead, 
and the current model based on correlation found in the data does 
help for pattern detection, but not causal inference.

Several people have claimed strategies that enable causal infer-
ence from observational data, with the seminal framework of 
Pearl  (2009) being among the most influential. Although the 
terminology varies across frameworks, they generally agree on 
three core conditions. First, one must articulate a causal model 
that specifies how variables are thought to influence one an-
other. This is typically expressed using a directed acyclic graph 
(DAG), which makes explicit the causal pathways. Second, the 
model must satisfy the assumption of causal sufficiency (i.e., we 
ensure no unobserved confounders): all common causes of the 
exposure and the outcome must be observed and included, so 
that spurious associations can be blocked. Third, there must be 
compatibility between the structural model and observed data, 
often referred to as the faithfulness or stability assumption. This 
means that any statistical independencies observed in the data 
must correspond to the independencies implied by the causal 
graph. These conditions are conceptually distinct: the first con-
cerns the formulation of assumptions, the second concerns the 
measured variables and the third concerns the consistency be-
tween the causal structure and the data. They jointly determine 
whether causal effects are identifiable from observational data 
using tools such as adjustment criteria or do-calculus.

Having the possibility for causal inference with observational 
data is particularly attractive for DSM because it allows us to 
ask questions of the form: what happens on Y (a soil property) 
if we change X (environmental covariates)? without the require-
ment for controlled experiments. For example, a plausible causal 
pathways for SOC stock could be defined as:

These pathways, along with others not shown here, are 
grounded in theory and pedological knowledge rather than 
mere correlation. They provide a structured way to reason 
about interventions, such as changing vegetation cover, man-
aging crop residues differently or altering temperature and 
its effect on microbial respiration, and assessing their conse-
quences for SOC. Such pathways have been abundantly dis-
cussed in the pedology and biogeochemistry literature, yet 
they are seldom operationalized in DSM. The reasons are 
clear: the conditions required for causal inference are difficult 
to satisfy in typical DSM settings.

In the context of DSM, these conditions can typically be satisfied 
only partially. Domain knowledge does support the formulation 
of plausible causal pathways among soil-forming factors and 

soil properties, and confounding can sometimes be mitigated 
through data stratification or by imposing process-based con-
straints. However, causal sufficiency is seldom achievable: many 
relevant drivers (e.g., historical land-use, biological processes 
subsurface conditions) remain unmeasured or are only crudely 
proxied by available covariates. Faithfulness is difficult to sat-
isfy in DSM because any causal representation is scale-specific, 
while many covariates are obtained at scales incompatible with 
this representation, and further are measured imprecisely. This 
makes the independencies observed in DSM datasets difficult to 
align with those implied by any assumed causal model. Pearl's 
framework gives the formal ‘how’, that is, how to encode vari-
ables and estimate causal effects from observational data, but 
application to observational soil data is challenging.

3   |   The Two Views of Causality

Understanding causality in soil science requires us to step back 
from the three conditions previously described and ask a more 
fundamental question: what do we mean when we say that one 
factor causes another? This question can be answered with 
two viewpoints, starting with the one that underpins most of 
DSM today.

The first viewpoint, often called the successionist view of 
causation, interprets causal relationships in terms of stable and 
repeatable regularities: when a particular configuration of condi-
tions is reliably associated with an outcome, the former is treated 
as a causal factor for the latter. Although successionism is some-
times expressed in temporal terms (i.e., a cause precedes an ef-
fect), its core idea is regular association rather than chronology, 
which means it applies to static spatial data such as those used 
in DSM. Much of DSM implicitly relies on this logic: by iden-
tifying consistent relationships between soil properties and co-
variates across a landscape, we infer what tends to co-occur and 
exploit these regularities for prediction. For example, in montane 
temperate regions, SOC often increases with elevation because 
of low temperatures and slow decomposition, whereas in arid 

mountain systems, SOC may decline with elevation due to sparse 
vegetation and limited inputs. However, a successionist view re-
mains essentially about patterns without guaranteeing that they 
reflect underlying processes. As Figure 1 illustrates, such asso-
ciations can be fragile and changing when data are partitioned, 
when additional variables are included, or when confounding 
structure is altered. This does not make causal inference in DSM 
impossible under a successionist logic, but it is challenging to sat-
isfy the three conditions previously described.

A second viewpoint, often called generative, holds that 
causation arises from the operation of mechanisms within 
systems, not from regular association alone. To explain 
causally in science is to specify the internal structures and 

(1)
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processes that bring about an effect. In this view, the empha-
sis falls on the mechanisms that generate outcomes. An ob-
served association between A and B is therefore not sufficient 
for a causal claim. Rather, A must initiate a process through 
which B is produced. For example, nitrogen fertilizer does not 
merely co-occur with soil acidification. It triggers microbial 
nitrification, releasing hydrogen ions into the soil, which in 
turn lowers pH and drives acidification. Here the causal link 
rests not on association alone but on a well-specified chain of 
processes connecting the initial intervention to the final state, 
with empirical regularities providing support for the underly-
ing mechanism.

These two views on causality have been extensively discussed 
in the scientific literature. As Harré (1972) has argued, even if 
two variables are consistently associated, even if the direction 
of influence is clear, and even if the effect appears inevitable 
under certain conditions, we may still lack a causal explana-
tion. Causal knowledge is not exhausted by establishing that 
a set of elements is associated with another; what must be un-
derstood is the system of processes through which such asso-
ciations arise.

SOC mapping provides a clear illustration. Under a succession-
ist approach, one might fit a machine-learning model to predict 
SOC across a landscape using covariates such as remote sensing 
indices, slope, clay content, rainfall and temperature. The out-
put may reveal that areas with low slope and moderate rainfall 
tend to hold more carbon. This is an empirical regularity that 
aids prediction, but it does not by itself explain why these condi-
tions co-occur with higher SOC. In Harré's sense, such a model 
may be externally accurate yet remains descriptive.

A generative approach would reframe the exercise. Instead of 
stopping at observed associations, DSM would be guided by the 
known processes through which SOC is produced, transformed 
and stabilized: plant productivity generates litter inputs; micro-
bial activity decomposes organic matter; soil texture and min-
eralogy regulate stabilization mechanisms. With this structure 
in view, the statistical model is no longer a black box relating 
predictors to outcomes, but one organized around the mecha-
nisms that connect vegetation, climate and soil properties to soil 
carbon. What emerges is not just a pattern but an explanation: 
environments with high plant productivity and moderate mois-
ture accumulate more soil carbon because inputs exceed decom-
position losses, and fine-textured soils stabilize carbon more 
effectively. We argue that, among the available viewpoints, a 
generative view of DSM is the one most capable of satisfying the 
three conditions for causal inference described above.

4   |   Generative Causality to Digital Soil Mapping

A generative DSM view extends the conventional two-term soil 
scheme:

which was formally described for DSM in McBratney 
et  al.  (2003) with the scorpan model, where soil in space and 
time is expressed as a function of soil-forming factors, namely, 

soil, climate, organisms/vegetation, parent material, time and 
spatial location. McBratney et al. (2003) describe that the only 
unknown is the form of the function linking soil to the forming 
factors, and that ‘we shall not consider the direction of causal-
ity’. This reflects a successionist view: soil-forming factors and 
soil properties are associated in consistent ways, and these regu-
larities are used for prediction.

The generative alternative introduces an explicit mechanistic 
layer. The three-term soil scheme proposed by Gerasimov (1984) 
replaces the direct mapping with:

in which soil-forming factors act through identifiable processes 
that produce soil properties. Although the distinction appears 
subtle, it aligns with a generative view of causality: factors influ-
ence outcomes through mechanisms, allowing the model to rep-
resent how interventions or system changes propagate through 
these processes.

In a generative DSM framework, soil processes would be treated 
as determined once their governing mechanisms are specified. 
Biogeochemical processes such as organic matter decomposi-
tion, nutrient cycling or moisture dynamics follow functional re-
lationships with environmental and soil variables. For example, 
decomposition rates depend on temperature, moisture, substrate 
quality and microbial activity. By making these dependencies 
explicit, the model can propagate changes in inputs through the 
underlying processes to predict resulting soil properties across 
a landscape. In this way, generative DSM moves beyond empir-
ical associations: system behaviour arises from specified mech-
anisms, providing a structured foundation for reasoning about 
interventions and for identifying and controlling confounding 
factors.

The methods that support a generative causal view of DSM al-
ready exist in various forms. They fall broadly into two families: 
process-informed DSM and quantitative pedogenesis modelling. 
The first integrates mechanistic understanding into statistical 
models of soil variation. In process-informed machine learning 
(e.g., Zhang et al. 2024), predictors are selected, transformed or 
constrained using knowledge of the governing soil processes 
so that the statistical model learns relationships that are con-
sistent with known mechanisms rather than associations. The 
second family, quantitative pedogenesis models (e.g., Minasny 
et al. 2008; Finke and Hutson 2008), simulates soil formation ex-
plicitly through processes such as organic matter accumulation, 
mineral weathering, horizon development or clay translocation. 
In these models, the pathways from soil-forming factors to soil 
properties are specified directly by the modeller.

We therefore argue that the three conditions of causal inference 
with observational data are far more naturally satisfied within a 
generative DSM view than within a successionist one. A gener-
ative view requires the modeller to specify the mechanisms and 
processes that link soil-forming factors to soil properties, which 
directly supports the first condition: it yields an explicit causal 
model rather than an empirical association structure. Because 
mechanisms define how factors act through processes, they also 
clarify which variables must be measured to block confounding, 

(2)soil forming factors→ soil,

(3)soil forming factors→ processes→ soil,
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making the assumption of causal sufficiency more plausible 
than in a successionist approach where confounders remain im-
plicit. Finally, process-based representation imposes functional 
relationships grounded in biogeochemistry and pedogenesis, 
which makes the faithfulness assumption more credible. For 
these reasons, generative DSM provides a stronger foundation 
for meeting the identification conditions required for causal in-
ference from observational data.

Although generative DSM aligns more naturally with the con-
ditions required for causal inference, it is not straightforward 
to implement. Fully mechanistic models of soil processes are 
difficult to build: many pedogenic and biogeochemical mecha-
nisms are only partly understood, and key boundary conditions 
such as initial soil states or long-term histories are rarely known 
with confidence. Most process-based models in soil science are 
also semi-mechanistic. They rely on simplifying assumptions, 
parameterizations and scale-averaging that approximate, rather 
than fully reproduce, real processes. For this reason, adopting 
a generative view in DSM does not mean relying on complete 
mechanistic simulators. Instead, it calls for a framework in 
which mechanistic knowledge can be incorporated where avail-
able to clarify causal structure, guide variable selection, reduce 
confounding and stabilize dependence patterns. Such a frame-
work provides stronger support for causal inference from ob-
servational data than current practices rooted in a successionist 
view of DSM.

5   |   Concluding Remarks

Can DSM be causal? Soil dynamics result from complex chains 
of interacting mechanisms, yet the observational data used to 
study these systems rarely support straightforward causal in-
ference. The claim advanced here is that, in principle, causal 
reasoning within DSM is possible. Three conditions outline 
clearly, what must be satisfied for causal inference with obser-
vational data. We explain that two viewpoints exist for DSM 
causal inference, a successionist and a generative one. We argue 
that, among the available viewpoints, a generative view of DSM 
is the one most capable of satisfying the three conditions for 
causal inference described above. This does not mean that a 
successionist view precludes causal inference, but it makes it 
more challenging. A generative view considers that soil-forming 
factors influence soil properties through explicitly modelled 
processes. Because these processes are ‘fully determined’ by 
the modeller's specification, they provide a structured means 
to control confounding and better support the application of 
formal causal frameworks. Process-informed DSM and quan-
titative pedogenesis modelling are examples of techniques that 
support a generative view.

Yet, even if such a generative approach is possible in practice 
and would better support the conditions for causal inference 
from observational data in DSM, a more fundamental ques-
tion remains: is it necessary to aim for causality in DSM? 
DSM, like any empirical modelling framework, has always 
had two primary objectives: prediction and understanding. 
Its predictive power is well established, and it can be used 
to generate and test hypotheses about soil-environment re-
lationships. Insisting on formal causal inference with DSM 

may therefore be neither essential nor fully compatible with 
current practices. A more prudent stance may be to acknowl-
edge the potential of generative, process-informed DSM for 
causal reasoning, while recognizing that, in most cases, the 
strength of DSM lies not in establishing causality but in pre-
dicting soil properties and identifying patterns worthy of fur-
ther investigation.
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