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A B S T R A C T

Accurate modelling and mapping soil organic carbon are crucial for supporting soil health restoration and 
climate change mitigation at both regional and global scales. However, regional soil predictions often suffer from 
data scarcity and high prediction uncertainty. Utilizing a pre-trained global-to-regional soil carbon predictive 
model can be a potential solution to address this challenge. Despite its promise, how to construct and apply the 
global-scale model to enhance regional-scale soil carbon mapping remains largely unexplored. Here, we propose 
the Global Soil Carbon Pre-trained Model (GSoilCPM), a deep-learning-based domain adaptative model, to 
enhance regional-scale soil carbon predictions. Based on large amount of environmental covariate data and 
106,167 soil samples across the globe, we verify our hypothesis of the effectiveness of this ’global-to-regional’ 
modelling strategy. The pre-trained model can be then transferred and fine-tuned to bridge the regional- and 
global-scale soil–environment relationships. We applied and validated this modelling strategy in four regional- 
scale study areas, three in the Northern Hemisphere and one in the Southern Hemisphere, each with distinct 
environmental background. Compared to traditional modelling approaches as a baseline, four case studies all 
demonstrated significant improvement in prediction accuracy across diverse environments and varying data 
availabilities. The average percentage improvement across all regions is 10.93% (absolute values decreased by 
1.20 g kg− 1 averagely) in MAE and 29.04% (absolute values increased by 0.10 averagely) in CCC. The appli-
cability and future horizons of using GSoilCPM were further discussed. We further reveal that regions with fewer 
soil samples or lower baseline accuracy benefit more from the pre-trained global model. Our findings highlight 
the advantages of leveraging the generalized knowledge from global models to enhance specifically localized soil 
modelling, positioning a potential paradigm shift in digital soil mapping, and far-reaching implications for soil 
monitoring and land management.

1. Introduction

Soil organic carbon (SOC), a critical component of the Earth’s carbon 
cycle, plays a fundamental role in maintaining soil fertility, regulating 
greenhouse gas emissions, and supporting overall ecosystem health 
(Tiessen et al., 1994; Schmidt et al., 2011; Sanderman et al., 2017). 
Accurate predicting and mapping SOC are essential for understanding 
carbon dynamics at both regional and global scales, guiding sustainable 

land management practices, and contributing to climate change miti-
gation strategies (Sanchez et al., 2009; Chen et al., 2022; Huang et al., 
2022; Zhang et al., 2025). Nevertheless, our current understanding of 
SOC distributions is frequently impeded by high uncertainties stemming 
from limited sample data and the underdevelopment of modelling 
techniques (Wadoux et al., 2021).

Traditional soil mapping methods rely on experienced soil surveyors 
who are familiar with the local area and spend considerable time in field 
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work, manually creating maps using the polygon data model (lines, 
points, and polygon shapes) (Bliss et al., 1995; Minasny and McBratney, 
2016; Brevik et al., 2017). Recent advancements in geostatistics 
(Heuvelink and Webster, 2001; Hengl et al., 2004; Heuvelink et al., 
2016; Ma et al., 2017), machine learning algorithms (Heung et al., 2016; 
Wadoux et al., 2020; Meng et al., 2022, 2024a; Helfenstein et al., 2024; 
Guo et al., 2025; Zhang et al., 2025), and increasingly accessible land 
surface datasets (e.g., geographical variables derived from remote 
sensing observations) (Mulder et al., 2011; Ivushkin et al., 2019; He 
et al., 2021) have introduced alternative ways to predict and map soil 
information with less manual labor. Data-driven approaches facilitated 
us to build soil–environment relationships from soil samples and envi-
ronmental covariates, and then to apply these fitted relationships to 
generate predicted soil maps. That is where digital soil mapping (DSM) 
methods come into play (McBratney et al., 2003; Minasny and 
McBratney, 2016; Ma et al., 2019; Liu et al., 2022). DSM technique has 
been widely applied to soil carbon mapping and has yielded satisfactory 
results at both global and regional scales (Minasny et al., 2013; Huang 
et al., 2022; Wang et al., 2023; Meng et al., 2024b; Zhang et al., 2022a, 
2024, 2025). Despite these advancements, we are still facing a ‘data 
hungry’ problem in soil mapping field, especially when the soil data are 
limited in specific regions (Zhu et al., 2015; Zhang et al., 2021; Cui et al., 
2025). The scarcity of soil observations makes it difficult to construct 
robust soil–environment relationships, which hampers the ability to 
accurately capture soil carbon patterns at regional scales.

A potential strategy to overcome this bottleneck is to construct a pre- 
trained domain adaptive model trained on globally available soil and 
environmental data. This model would operate as a ‘knowledge’ on 
soil–environment relationships across the globe, and could then be 
adapted (e.g., fine-tuned or transferred) for the regional-scale SOC 
predictions. Given the success of pre-trained and transfer modelling 
strategy in fields outside of soil mapping (Awais et al., 2023; Moor et al., 
2023; Wu et al., 2023; Hong et al., 2024), it is reasonable to explore 
whether such an approach could be applied for soil carbon predictions 
and whether it could help alleviate the issue of insufficient soil obser-
vations at regional scales and improve mapping accuracy. While a 
similar ‘global-to-local’ approach has been used in soil spectroscopic 
modelling (Shen et al., 2022; Viscarra Rossel et al., 2024), a clear 
research gap remains in applying this concept and designing appropriate 
modelling frameworks for SOC mapping.

Another motivation for this study lies in the fact that the demand for 
accurate regional-scale soil predictions is often difficult to directly fulfill 
using existing global-scale soil map products. Some efforts have pro-
duced global maps of soil carbon at medium spatial resolutions, such as 
the well-known Harmonized World Soil Database (HWSD) (FAO, 2012) 
and SoilGrids product (Hengl et al., 2014, 2017; Poggio et al., 2021). 
However, recent studies have highlighted significant uncertainties in 
these global soil gridded datasets (Dai et al., 2019; Lilburne et al., 2024). 
This is largely due to incomplete coverage of global soil profiles, limiting 
representation across all areas (Batjes et al., 2017). Moreover, global- 
scale modelling often underestimates or biases the high spatial vari-
ability of soil carbon at local scales. This is because spatial predictions 
tend to smooth distribution tails (Nussbaum et al., 2023) and encounter 
gaps in predictor space where training sample data is insufficient (Meyer 
and Pebesma, 2021). In addition, models developed for global applica-
tions, such as the random forest (RF) models for producing SoilGrids, 
cannot be directly transferred to local areas. These factors impede the 
potential re-utilization of global-scale data and models, which would be 
a valuable foundational resource for enhancing regional-scale SOC 
predictions.

To address this challenge, we propose leveraging a Global Soil Car-
bon Pre-trained Model (GSoilCPM), initially trained on global-scale soil 
profiles with SOC observations and remote sensing derived environ-
mental covariate datasets, to enhance regional-scale SOC mapping. The 
model architecture not only adopts soil formation theory (Jenny, 1941; 
McBratney et al., 2003) to differently process the environmental 

covariates influencing soil by variable category, but also uses deep 
convolutional networks to separately extract latent feature from each 
covariate category with varying window sizes that captures spatial 
contextual information. The pre-trained model can then be fine-tuned 
with an additional round of parameter optimization to perform 
regional SOC mapping tasks.

Here, we aim to determine whether the proposed deep-learning (DL)- 
based model can achieve competitive performance compared to the 
widely used ensemble machine learning models at the global scale. 
Then, we hypothesize that the challenges of data scarcity and complex 
nonlinear patterns in a target region can be mitigated by utilizing the 
pre-trained global-level model. To investigate this hypothesis, we 
applied a transfer learning approach to bridge the gap between global 
and regional soil–environment relationships. This allows the generalized 
knowledge captured by the global model to be localized, enhancing 
regional SOC modelling. Establishing this ‘global-to-regional’ modelling 
strategy is grounded in the idea that, while local soil conditions are 
shaped by site-specific processes, many underlying mechanisms driving 
soil variations are governed by universal geographical and ecological 
principles. Therefore, those macro-scale regularities captured in a global 
model can serve as a knowledge prior and can provide a structured 
starting point for guiding regional soil predictions.

In this study, we first introduced the GSoilCPM model and trained it 
using the latest global soil profile database from the World Soil Infor-
mation Service (WoSIS), integrated with various environmental cova-
riates, including reflectance bands from satellite observations, climate, 
topography, vegetation and parent materials. We then applied the 
GSoilCPM model to generate SOC maps in four regions with four distinct 
landscape backgrounds and varying data availabilities. These results 
were compared with predictions from SoilGrids, RF models, and DL 
models without pre-training. Finally, we examined the advantages of 
using the global-scale model to enhance regional soil carbon modelling, 
supported by varying sizes of sample data in each case study areas, 
thereby illustrating the applicability and prospects of this modelling 
strategy.

2. Materials and methods

2.1. Global-scale datasets

2.1.1. Soil samples
The global-scale soil sample data were sourced from the WoSIS 

database (Batjes et al., 2020, 2024), one of the largest and most 
comprehensive repositories of harmonized soil profile data worldwide. 
For this study, we used the “WoSIS snapshot – September 2019”, which 
comprises 196,498 geo-referenced soil profiles worldwide with over 
832,000 soil layers or horizons. We filtered the profiles to include only 
those with measurements of SOC content (g kg− 1), and then checked for 
the layer observations up to a depth of 0.3 m. The profiles with low 
accuracy of the geographical coordinates (i.e., missing the information 
of degree, minute or second data) and those flagged as containing sur-
face litter were excluded. A total number of 106,167 global soil samples 
were finally obtained for this study. To estimate the mean SOC content 
in topsoil (0–0.3 m), we employed the equal-area spline algorithm to fit 
multiple SOC observations at different depth intervals. This method has 
been proven to be superior to alternative functions (Bishop et al., 1999; 
Malone et al., 2009). The average of the fitted SOC values from 0 to 0.3 
m was calculated as SOC content in topsoil for each sample location. 
After above data processing, the global soil profile locations, along with 
their topsoil organic carbon content values are shown in Fig. 1a. These 
profiles provide a broad geographic coverage, ensuring a representative 
sample set of global soil distributions across different environmental 
conditions.

2.1.2. Environmental covariates that related with SOC
The environmental covariates contain a series of variables that 
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influence soil carbon variations (Table 1). As one of the aims of this 
study is to build a pre-trained large-scale model that links SOC with 
environmental conditions, we selected most basic environmental vari-
ables as covariates, according to the concepts of soil formation factors 
and soil–landscape relationships (Jenny, 1941; Hudson, 1992; Zhu et al., 
2001; McBratney et al., 2003; Zhu et al., 2018). These covariates include 
climate, topography, vegetation, and parent material. We also collected 
remote-sensing-based surface reflectance information with seven spec-
tral bands from the moderate-resolution imaging spectroradiometer 
(MODIS) data product. Details of these covariates are shown in Table 1
and Table S1, and are also described as follows.

The remote sensing images that include multiple reflectance bands 
can be used as important predictors for soil mapping. Different soil 
properties, such as soil texture, moisture content, organic matter and 
mineral composition, reflect and absorb light differently across various 
wavelengths (Viscarra Rossel et al., 2006a, 2006b; Mulder et al., 2011). 
Thus, it is useful to feed the spectral bands into the model for analyzing 
reflectance patterns and inferring soil characteristics. We collected the 
reflectance data with seven bands (620–670 nm, 841–876 nm, 459–479 
nm, 545–565 nm,1230–1250 nm, 1628–1652 nm, and 2105–2155 nm) 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
MCD43A4 (version 6.1) data product (Schaaf and Wang, 2021). This 
dataset provides Nadir Bidirectional Reflectance Distribution Function 
(BRDF)-Adjusted Reflectance (NBAR) values, with a 500 m spatial 
resolution.

The temperature and precipitation variables obtained from World-
Clim (version 2) (Fick and Hijmans, 2017) were used to represent the 
climate condition for each sample location. In addition to the annual 
mean temperature and annual precipitation, the variables of tempera-
ture seasonality and precipitation seasonality (calculated as coefficient 
of variation for annual range of temperature and precipitation) were 

also adopted for reflecting the seasonal variations of these two climatic 
factors. The spatial resolution of these climatic factors is 1 km.

Five important topographic variables, including elevation, slope, 
aspect, vector ruggedness measure, stream power index, were collected 
from the Multi-Error-Removed Improved Terrain (MERIT) DEM data 
product (Yamazaki et al., 2017) and Geomorpho90m global dataset 
(Amatulli et al., 2020). The spatial resolution of these topographic fac-
tors is 90 m.

The variables representing vegetation growth were obtained by 
using vegetation indices derived from the satellite sensors of the MODIS. 
The MODIS Vegetation Indices product (MOD13A1 v061) (Didan, 2021) 
was adopted for extracting annual mean Enhanced Vegetation Index 
(EVI), annual minimum EVI, annual maximum EVI values at each 
sample location. The spatial resolution of the vegetation index value for 
each pixel is 500 m.

The bedrock property plays a key role in many processes at the Earth 
surface, and it is also an important influencing factor for soil predictions. 
We collected the rock property information from a global lithological 
map database (GLiM) with a resolution of 0.5 degree (Hartmann and 
Moosdorf, 2012), and extracted the value of basic lithological class at 
each soil sample location.

The integration of above datasets allows for the establishment of 
relationships between SOC and environmental covariates at a global 
scale, providing a solid foundation for the development and training of 
our deep learning model. It is noted that the set of covariates collected 
above for modelling was not designed to be too large for exhaustively 
covering all surface information, such as more different combinations of 
features across the spectra. The reason to reduce this complexity is that 
the goal of our modelling at the global scale is to generate a pre-trained 
large model reflecting the basic soil–environment relationships. Our 
emphasis is on constructing a foundational global-to-regional soil 

Fig. 1. Spatial distributions of global and regional soil sample data. a, A total number of 106,167 sampling sites (soil profiles) including soil organic carbon (SOC) 
observations in topsoil were collected from WoSIS database. b-e, Four regional-scale study areas with SOC sample data that are not included in WoSIS database. These 
study areas are located in Anhui province, China (region 1, n = 819) (b), Switzerland (region 2, n = 150) (c), Skjern river catchment, Denmark (region 3, n = 317) 
(d), and New South Wales, Australia (region 4, n = 490) (e).
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mapping approach that is transferable across regions and built on 
covariates that are widely recognized as core drivers of soil formation, 
broadly available and minimally uncertain. In this sense, we intention-
ally designed the scope of input variable set to include the most 
fundamental and widely accessible environmental covariates as 
described above. This way can make it easier for any modelers or users 
to first collect the same set of basic covariate data to re-utilize the pre- 
trained model we presented here, and then to adjust or extending the 
model by using their local-specific datasets.

2.2. Regional-scale study areas and datasets

To evaluate the transferability of the global-scale pre-trained model, 
four distinct regional-scale study areas were selected in consideration of 
their varying environmental backgrounds and SOC gradients. Three of 
these study areas are located in the Northern Hemisphere, and one is in 
the Southern Hemisphere (Fig. 1b-e). These regions were chosen for 
representing different climates, biomes and land covers, thereby 
providing a robust test for applying the proposed modelling strategy 
across different regional scales.

Region 1 represents the coverage of Anhui province in central- 
eastern China, characterized by a subtropical humid monsoon climate 
(Yang et al., 2021b). The elevation is roughly from 0 to 1806 m with flat 
plains in the north, low hills in the middle and rugged mountainous 
terrain in the south. The average annual temperature in Anhui is around 
15 ◦C, with annual precipitation ranging from 750 to 2000 mm. The land 
cover types mainly consist of croplands, forests and grass and shrub-
lands. Our research group has collected 819 soil samples with SOC ob-
servations in this area (Fig. 1b) (Zhang et al., 2022b). Region 2 covers 
the entire country of Switzerland. The climate in this region is generally 
temperate but varies greatly across localities, ranging from the near- 
Mediterranean climate at the southern tip to the glacial conditions on 
the mountaintops. More than half of this region is dominated by the 
Swiss Alps with rugged peaks, deep valleys and numerous glaciers. The 
remaining areas are broadly categorized into the Swiss plateau and the 
Jura mountains. The two primary terrestrial ecoregions in this region are 
the western European broadleaf forests and the conifer and mixed for-
ests of the Alps (Dinerstein et al., 2017). There are 150 soil samples 
collected from the EU project Land Use/Cover Area Frame Survey 
(LUCAS) (Orgiazzi et al., 2018) in this region (Fig. 1c). Region 3 is the 
Skjern river catchment located in Western Jutland, Denmark. The 
climate in this area is temperate maritime, with a mean annual tem-
perature of approximately 8 ◦C and annual precipitation around 990 
mm. The land surface elevations are from sea level at the coast to 125 m 
above sea level in the eastern area (Jensen and Illangasekare, 2011). The 
land use is mainly agriculture, followed by grasslands and forests. There 
are 317 soil samples collected in this area (Peng et al., 2015) (Fig. 1d). 
Notably, the soil samples from the above three study areas are not 
included in the WoSIS database. Region 4 is New South Wales in eastern 
Australia. The climate varies from warm temperate in the north and east 
to hot arid in the far west and subalpine in the southeastern highlands. 
Annual rainfall ranges from less than 200 mm to over 2,000 mm, with 
average daily maximum temperatures between 12 ◦C and 30 ◦C. 
Elevation goes from sea level along the coast to over 2,000 m inland. The 
land is used for large-scale agriculture (crops and livestock), forestry 
(native forests and plantations), urban development in major cities, and 
conservation areas like national parks (Wang et al., 2022). In this region, 
490 soil samples were collected, with half included in the WoSIS data-
base and half not (Fig. 1e).

The environmental covariates in these four regions were collected 
and processed to align with the datasets and variables used in the global 
dataset. The water bodies and urban areas in these study areas were 
excluded when applying models to generate the predicted maps of SOC. 
The descriptive statistics of the soil and environmental covariates in 
these regions are shown in Table S2-S5.Ta
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2.3. Architecture of ‘GSoilCPM’ deep learning model

The proposed GSoilCPM model is built on a deep learning framework 
to capture the complex relationships between SOC and environmental 
covariates. The model uses a deep neural network architecture, specif-
ically a convolutional neural network (CNN), to extract important fea-
tures from the input data, connect and fuse these features, and finally 
generate the predicted values. The overall architecture of the model is 
shown in Fig. 2.

The model inputs are separated by the category of covariate, with 
each category having a pre-defined 2-D (dimensional) input size. This 
input consists of a set of pixels in square shape with a center pixel where 
a soil sample located in, and then includes pixels within a window 
expanding outward from the center point, with a specific spatial reso-
lution for matching the original imagery dataset. This allows the model 
to process covariates separately by considering their varying spatial 

contexts and resolutions. For example, the climatic variables are often 
not necessary to have a high resolution like topographic variables, as the 
magnitude of variations in spatial neighborhood information is rela-
tively smaller in climatic variables than that in topographic variables. 
Therefore, different covariates need be processed with their specific 
window sizes and resolutions before being used as model inputs.

Each category of covariates includes multiple 2-D input variables 
with the same window size and resolution, allowing them to be com-
bined into a 3-D input for that category. The CNNs were adopted to 
process these inputs separately and extract their latent features. This 
includes multiple times of convolutional and pooling operations, which 
are effective in feature extraction (LeCun et al., 2015). More details on 
the operations in CNNs refer to Appendix A1. Each category of cova-
riates can be processed to produce a vector of extracted feature. All 
feature vectors are then concatenated into a single, longer vector. A 
second round of CNN processes this combined vector to extract the 

Fig. 2. Architecture of the Global Soil Carbon Pre-trained Model (GSoilCPM). This global-scale model for predicting soil organic carbon (SOC) is designed by using a 
deep learning framework with a structure that allows for differentiated processing environmental covariates influencing SOC based on soil formation theory. The 
model uses convolutional networks to extract the latent features from multiple 2-D covariate data for each input category separately, with adjustable window size to 
account for spatial context and resolution of inputs. These extracted features are concatenated together and processed through convolution and fully connected layers 
to extract their interactions, and then output the final predicted SOC (ŜOC). The global soil profile observations and remote sensing derived environmental covariates 
are collected as the global-scale database to support the training procedure of the model. The lighted arrow lines in orange represent that using backpropagation to 
optimize model parameters by minimizing the loss function generated from comparing the difference between predicted and observed SOC values. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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interactions among these features. The dropout layers are included to 
prevent overfitting. We call this the feature fusion process, which sup-
ports the subsequent stage that uses a multilayer neural network (Ap-
pendix A2) for continued forward computation. Finally, fully connected 
layers perform the regression to output the predicted SOC (ŷ).

2.4. Global-to-regional training strategy

Different from the usual way of regional soil predictions and soil 
mapping based on data only in those regions, in this study, the regional 
soil predictive mapping task is performed by using the regional data 
with the support of global data. This modelling idea can be called as a 
‘global-to-regional’ model training strategy. The basic concept to 
implement it is using domain adaptation via transfer learning. It aims to 
adapt a deep learning model trained on a source domain (i.e., global- 
scale soil prediction) to perform well on a target domain (i.e., 
regional-scale soil prediction), when data distribution in the two do-
mains are different but the prediction tasks are similar. Based on the 
deep learning architecture, domain adaptation can be done by reusing 
the learned feature representations from a data-rich source domain and 
fine-tuning the model using relatively limited data from target domain 
(Ganin et al., 2016; Farahani et al., 2021). The specific methodology and 
implementation of the above basic concept are described as follows.

Typically, DSM relies on datasets in a certain study area. A data- 
driven approach is often adopted, employing a machine learning 
model to establish a soil–environment relationship (f) based on soil 
samples and environmental covariate datasets only from that region 
(Fig. 3a). This conventional approach can generate a predictive model 
(fθr : Xr↦yr) for a region as follows: 

ŷr = fθr (Xr) (1) 

where Xr represents the environmental covariates in the region; ŷr 
represents the predicted SOC values in the region; θr represents the 
model parameters (e.g., the weights that are parameterized in a deep 
neural network), which can be trained by minimizing the loss function 
as follows: 

θ̂r = argmin
θr

L
(
yr, fθr (Xr)

)
= argmin

θr

1
nr

∑nr

i=1

(
y(i)

r − fθr

(
x(i)r

) )2 (2) 

where L ( • ) is the loss function measuring the mean squared difference 
between the predicted values fθr (Xr) and observed SOC values (yr); nr is 
the number of samples in the region; x(i)r and y(i)r represent the envi-
ronmental covariates and the observed SOC values for the i-th sample in 

the regional data, respectively. Here, θr is optimized from random 
starting values, without any prior support from the data out of the re-
gion. The backpropagation procedure is adopted to compute the 
gradient of the loss function with respect to the model parameters to 
train the model (Appendix A3).

In this study, the global-to-regional training strategy is shown in 
Fig. 3b. We first fit a global-level soil–environmental relationship 
(fθg : Xg↦yg), which is trained by minimizing the loss function on the 
global dataset: 

θ̂g = argmin
θg

L

(
yg, fθg

(
Xg

) )
= argmin

θg

1
ng

∑ng

j=1

(
y(j)

g − fθg

(
x(j)g

))2
(3) 

where Xg and yg represent the environmental covariates and the 
observed SOC values for all global samples, respectively; ng is the 
number of global samples (generally ng≫nr); x(j)g and y(j)g represent the 
environmental covariates and the observed SOC values for the j-th 
sample in the global data, respectively.

Then, the global model can be fine-tuned using the dataset in a target 
regional area to obtain the regional-level soil–environment relationship 
(fθg→r ). Therefore, to transfer the global model to a regional setting, we 
define an adaptation procedure F adapt that transforms the pre-trained 
global model into a regional model by considering limited regional 
sample data: 

fθg →θr = F adapt

(
fθg ;Xr, yr

)
(4) 

Alternatively, the adaptation can be expressed as optimizing the 
regional-specific parameter shift Δθ: 

θr = θg +Δθ (5) 

Δ̂θ = argmin
θg

L

(
yr, fθg+Δθ(Xr)

)
(6) 

This formalism explicitly reflects that the regional model can be built 
upon the global model and optimized further with regional data, via a 
training procedure of adaptation. It is noted that this training strategy 
allows the regional model parameters θr to be initialized and further 
optimized from the pre-trained global parameters. This training strategy 
is particularly valuable for DSM, where regional datasets are often 
sparse, but global datasets are more comprehensive. By employing 
domain adaptation via transfer learning, it enables knowledge reuse of 
the generalized soil–environment relationships learned globally, 
thereby reducing local data requirements and enhancing predictive 

Fig. 3. The difference of basic concepts between the conventional and the proposed new soil mapping methods. (a) The conventional data-driven approach which 
trains a soil–environmental relationship (fr) at the regional level only using the soil sample and environmental covariate datasets in a certain region. (b) The proposed 
new soil prediction/mapping approach first fits a global-level soil–environment relationship (fg) (it can be fitted by the proposed GSoilCPM that is illustrated in 
Fig. 2), and then fine-tunes the model by using the dataset in a target regional area to obtain the regional-level soil–environment relationship (fg→r). An adaptation 
procedure F adapt is used to transform the pre-trained global model into a regional model by considering limited regional sample data (Datar).
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performance.
The previously described global soil profile data with SOC observa-

tions and remote sensing derived environmental covariates, serve as the 
global- and regional scale database to support this training process. The 
backpropagation is used to optimize model parameters based on the loss 
function, which is represented as the lighted arrow lines in orange color 
in Fig. 2.

2.5. Evaluation of SOC predictions

A ten-fold cross-validation was adopted to assess the prediction ac-
curacy by using different modelling methods. This approach helps pre-
vent bias in evaluation caused by the possible overfitting of the model to 
a single validation set. In each region, all samples were partitioned into 
ten subsets. Nine subsets were used as the training data to fit the model, 
and the model performance was validated on the remaining fold. The 
final assessment of the model was based on the mean accuracy across the 
ten validation sets. To ensure a representative spatial distribution of the 
training and validating sample sets, we adopted a global grid with 5-by- 
5-degree latitude-longitude space, covering the globe, and then split the 
training and validating sample sets in each grid cell for ensuring uniform 
spatial coverage. This procedure was repeated ten times, and each time 
using a different subset for validation. The accuracy metrics of the mean 
absolute error (MAE) and the concordance correlation coefficient (CCC) 
were computed on the validation samples to assess the model perfor-
mance: 

MAE =

∑n
i=1|yi − ŷi|

n
(7) 

CCC =
2rσyσŷ

σ2
y + σ2

ŷ + (y − ŷ)2 (8) 

where n is the number of validation samples; yi and ŷi are i-th observed 
and predicted SOC value respectively; y and ŷ are the averages of the 
observed and predicted values; σy and σŷ are the corresponding standard 
deviations; and r is the correlation coefficient value between the pre-
dicted and observed values. A smaller value of MAE or a larger value of 
CCC means a higher prediction accuracy.

The random forest (RF) model was taken as a reference model for 
comparing with our proposed modelling approach. As an ensemble 
model, RF generates random subsets of data to train different base 
learners and then aggregates their predictions, which allows it to have a 
good ability in generalization. Considering RF has been tested to be 
superior to many other conventional machine learning models for soil 
mapping tasks (Brungard et al., 2015; Heung et al., 2016; Zhang et al., 
2021), it is reasonable and more challenging to adopt it as an reference 
model or a baseline to evaluate the performance of the proposed deep 
learning model. The RF model was trained only on regional data, 
considering it exemplifies a conventional “local-only” machine learning- 
based modelling strategy, which is commonly used in many regional 
DSM tasks. To illustrate the efficiency and advantages of using pre- 
trained global-scale model for enhancing regional-scale SOC pre-
dictions, the deep learning model with the same architecture and built 
on regional data but without using the pre-training was also taken for 
comparing. The data split for training and validation in the cross- 
validation was identical for both the RF and DL models, ensuring a 
consistent basis for model evaluation and comparison. We further 
compared our regional modelling results with the SoilGrids product to 
highlight how widely used global soil data products suffer from potential 
biases in regional-scale predictions.

To test how modelling improvement (measured as the percentage 
improvement of prediction accuracy from GSoilCPM versus the baseline 
RF model) changes in response to different regional sample sizes and 
baseline accuracies, we determined different numbers of sample data for 
training models and thus to detect the potential relationships. We 

randomly selected different proportions of sample data (ranging from 
10% to 100% with an interval of 10%) to the total available training data 
in each region. For each sample size, we repeated the random sampling 
process 100 times, allowing us to observe statistical differences in the 
modelling results across sample sizes. We further aggregated all 
modelling results to analyze the relationship between model improve-
ments and changes in the baseline accuracy of SOC prediction in each 
study area.

3. Results and Discussion

3.1. Assessment of global-scale modelling

The global-scale deep learning model (GSoilCPM) exhibited 
competitive model performance of SOC compared with the widely used 
RF model at the global scale (Fig. 4), both of which were trained on the 
same WoSIS global soil sample data and environmental covariates. 
Specifically, cross-validation results illustrate that the deep learning 
model achieved an accuracy of 7.15 g kg− 1 in mean absolute error 
(MAE) and 0.57 in concordance correlation coefficient (CCC), while the 
RF model had a MAE of 7.56 g kg− 1 in and a CCC of 0.57. The RF model 
is well-known for its strong generalization capability and has been 
widely used. While previous studies have showed challenges in sur-
passing RF performance with deep learning models (Wadoux, 2019; 
Yang et al., 2021a), our results indicate that deep learning model can 
achieve a comparable or slightly better prediction accuracy in both 
metrics when large amounts of global-scale data are available. Both 
models effectively captured the global variability in SOC by modelling 
the complex relationships between SOC and various environmental 
covariates.

3.2. Global-scale pre-trained GSoilCPM allows enhancement in regional- 
scale SOC predictions

SOC prediction accuracies for different models across the four re-
gions were assessed using ten-fold cross-validation (Fig. 5). For com-
parison, we also evaluated the accuracy of the SoilGrids product, 
validated by our regional sample data (column 1 in Fig. 5). In general, 
across all four study areas, models trained on regional sample data 
produced significantly better predictions than using SoilGrids directly. 
This is because SoilGrids was derived from a model trained on a global 
soil sample database (i.e., WoSIS data) that does not include samples 
from our study areas. While previous studies have shown that SoilGrids 
can provide good SOC predictions (Hengl et al., 2017; Poggio et al., 
2021), our findings suggest that its global model cannot guarantee 
acceptable accuracy in regions lacking WoSIS sample data.

Comparing the baseline RF model with the DL model without pre- 
training (i.e., models are trained only based on the data in a region) 
(columns 2 and 3 in Fig. 5), we found that the proposed DL model ar-
chitecture (without pre-training) achieved competitive result compared 
to RF, even with limited regional sample data. More importantly, we 
found that when we used the DL model with pre-training, which means a 
pre-trained GSoilCPM was constructed and then it was transferred into 
these regional study areas, model performance shows a large improve-
ment (column 4 in Fig. 5). These results support our hypothesis that the 
regional-scale soil carbon predictions can be enhanced by transferring 
global-scale soil–environment relationships via using a DL-based 
modelling approach. Specifically, in four case studies from Region 1 to 
Region 4, the metrics of MAE (unit: g kg− 1) decreased by 0.13, 0.14, 0.08 
and 0.04, and the metrics of CCC increased by 0.43, 2.23, 1.75 and 0.40 
when comparing the RF and fine-tuned pre-trained DL models, respec-
tively. Similar improvements in accuracy metrics were observed in all 
other study areas. In general, the percentage improvements are 10.21%, 
12.92%, 11.25% and 9.32% in MAE and 41.94%, 32.56%, 36.36% and 
5.33% in CCC for Regions 1–4, respectively. The average improvement 
across all regions is 10.93% (decreased by 1.20 g kg− 1) in MAE and 
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29.04% (increased by 0.10) in CCC. These results substantiate that, by 
leveraging the GSoilCPM deep learning model pre-trained based on a 
vast repository of global SOC data, the model can effectively transfer its 
nuanced understanding of complex global soil–environment relation-
ships to capture regional soil variations.

When comparing mapping results from SoilGrids, RF models, and 
pre-trained DL models, similar general pattern of SOC variation across 
space are observed in each region. However, substantial differences in 
value ranges and some local details of SOC distributions are observed 
(Fig. 6). It shows that SoilGrids tend to overestimate SOC in regions with 
lower SOC (relative to the global mean), and underestimate SOC in re-
gions with higher SOC. For example, across the mountainous areas of 
Switzerland (Region 2) and arid areas in New South Wales, Australia 
(Region 4), SoilGrids shows a large bias compared to the prediction 
maps generated using local sample data (Fig. 6d-f, j-l). This bias may 
result from the RF model’s tendency to compress the range of predicted 
values due to its intrinsic method of averaging multiple predictions from 
individual trees, smoothing out extremes and reducing variability in the 
predictions (Nussbaum et al., 2023). This problem is more prominent 
when comparing the regional and global mapping results, as the 
regionally extreme low and high SOC values might be compressed to 
reduce the global-level bias in average.

The mapping results from RF and GSoilCPM (pre-trained DL model) 
also show notable differences. The SOC maps derived from the pre- 
trained DL model show more detailed spatial heterogeneity, especially 
can be found in mountainous and rugged areas across the southern part 
in Region 1 and 2. This can be partly explained by the fact that the 
proposed DL model can produce a higher spatial resolution of mapping 
results. This advantage comes from the GSoilCPM model’s ability to 
incorporate covariate data with different spatial contexts and different 
original resolutions, whereas traditional models usually require all 
covariates to be pre-processed to the same resolution. This pre- 
processing step may lead to the loss of detailed information from local 
neighborhood pixels (Wadoux, 2019; Yang et al., 2021a; Zhang et al., 
2022a), such as high resolution topographic variables. Due to that 
different factors may influence SOC at different spatial scales (Behrens 
et al., 2010; Tan et al., 2024), resampling all the covariates into a same 
fixed resolution may cause mismatches between the affecting scale of 
environmental factors on SOC. Moreover, the density distribution of 
SOC values mapped by the pre-trained DL model better matches the 
sample-level SOC distribution than that from RF model (Fig. S1), and 
the DL model also demonstrated higher validation accuracy. Therefore, 
the prediction maps of SOC generated by the pre-trained DL models can 
be considered more reliable. By combining global and regional soil and 
environmental datasets via transferring a pre-trained DL model, the final 
prediction maps reconciled the global knowledge of soil–environment 

relationships extracted from global databases with the region-specific 
SOC patterns derived from local observations.

3.3. Modelling improvement related with sample size and baseline 
accuracy

The relationships between model improvement (i.e., the accuracy 
improvement of the pre-trained DL model over the baseline as repre-
sented by the RF model), regional sample size, and baseline accuracy are 
crucial for understanding how the performance of GSoilCPM changes 
under different conditions. In our analysis, we observed that applying 
GSoilCPM in all four regions consistently resulted in better performance 
on average, compared to the baseline (Fig. 7a). More importantly, it 
shows that the degree of enhancement in SOC prediction particularly 
became greater as the number of samples in a region decreased (Fig. 7a). 
This trend highlights the advantages of transferability and robustness of 
the GSoilCPM, particularly when regional sample data are limited. For 
instance, in Region 2 and 3, models trained with less than half the total 
sample size reported an over 50% model improvement on average. This 
trend was less evident in Region 1, where the degree of improvement 
remained relatively consistent across different sample sizes. This is 
mainly because Region 1 has the largest number of sample data 
compared to the other three regions, leading to less contrast in model 
performance when using samples sizes greater than ten percentage of 
the total. In addition, it also indicates that a larger number of available 
regional samples may sometimes continuously contribute to further 
improvement in DL model fitting.

The observed improvements are also closely linked to baseline ac-
curacy — specifically, the prediction accuracy derived from the RF 
model. In cases where baseline accuracy was lower, the degree of pre-
diction enhancement when utilizing GSoilCPM tended to be higher 
(Fig. 7b). Conversely, in areas with a higher baseline accuracy, the 
relative improvements were more modest. This phenomenon was found 
in all four study areas. Interestingly, the slope of this negative rela-
tionship was more pronounced when the mean prediction accuracy of 
the baseline RF model was low, such as the steep slope shown in Region 
2 and 3 when the CCC of RF model result was below 0.3 (Fig. 7b). 
Generally, these results demonstrate that as the number of soil samples 
decreases, incorporating a pre-trained DL model, such as GSoilCPM 
proposed in this study, not only enhances SOC prediction accuracy but 
does so more effectively where the model performance is relatively low 
when only using regional sample data.

3.4. Modelling from globe to regions: A new paradigm for soil mapping

The modelling strategy employed in this study represents a potential 

Fig. 4. The validation accuracies of modelling soil organic carbon content (SOC) by using random forest model (a) and the proposed GSoilCPM deep learning model 
(b) at the global scale. All dots are the observed and predicted SOC values for all validation samples from ten-fold cross-validation.
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paradigm shift in soil mapping, wherein global-scale pre-training a DL 
model can serve as a domain adaptation model for more accurate 
regional-scale soil predictions. By generating the interconnectedness of 
SOC and environmental covariates on a global scale, we can establish 
frameworks that facilitate the regional application of soil mapping via 
the GSoilCPM architecture. Traditionally, regional soil mapping ap-
proaches often rely solely on limited regional datasets, which may 
introduce biases and limit the generalizability of models when regional 
sample data are insufficient. Conversely, the modelling approach based 
on GSoilCPM leverages soil–environment relationships obtained from 
the vast amount of globally available soil and environmental data, 
providing a helpful foundation for regional fine-tuning.

The proposed ‘global-to-regional’ modeling strategy derives its 
effectiveness from the theoretical plausibility of the following basic 
concepts. First, soil variations are fundamentally shaped by long-term 
interactions with climatic, topographic, and ecological factors that 
exhibit consistent patterns across scales. These broad-scale 

soil–environment relationships, often governed by macro geographical 
and ecological regularities, can be learned from globally distributed data 
and serve as transferable knowledge. Second, deep learning models are 
well-suited for capturing such abstract and hierarchical patterns, 
enabling them to inductively generalize from diverse environmental 
contexts. Thus, the integration of transferable global knowledge with 
region-specific fine-tuning offers a new solution for enhancing regional 
DSM.

Furthermore, the search process for the optimal hypothesis space (i. 
e., a set of all possible functions or models that the learning algorithm 
can produce, and each function in this space represents a potential so-
lution to the problem, such as the problem of SOC prediction) regarding 
soil–environment relationships can be markedly improved when using 
GSoilCPM. Fig. 8 conceptually illustrates why GSoilCPM offers an 
effective modelling strategy for regional soil predictions. In traditional 
regional modelling, machine learning algorithms search for an optimal 
predictive function within a hypothesis space using only local data. This 

Fig. 5. Comparisons of validation accuracies for predicting soil organic carbon content (SOC) using different modelling strategies across four regional-scale study 
areas. Each row represents the results for one regional study area. The cross-validation accuracies for SoilGrids (a, e, i, m), random forest (RF) models (b, f, j, n), deep 
learning (DL) models without pre-training (c, g, k, o), and pre-trained DL model (i.e., GSoilCPM) (d, h, l, p) are shown in the first, second, third and fourth columns, 
respectively.
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process is prone to overfitting or convergence to suboptimal local 
minima, particularly when observations are sparse. By contrast, the 
GSoilCPM framework leverages a globally pre-trained model that en-
codes generalized soil–environment relationships. This global knowl-
edge effectively constrains the hypothesis space, guiding the regional 
model initialization closer to the optimal solution. As a result, the sub-
sequent fine-tuning process on regional data becomes more stable, 

sample-efficient, and less susceptible to possible poor convergence. This 
global-to-regional transfer learning approach provides a plausible way 
to reduce optimization bias in regional-scale soil mapping.

The advantage in adopting this modelling strategy also stems from 
the fact that the environmental conditions in a certain region often 
overlap with those collected from the global database. Using principal 
component analysis (PCA) to transform the soil and environmental 

Fig. 6. Mapping results of predicted soil organic carbon content (SOC) derived from SoilGrids (a, d, g, j), random forest (RF) model (b, e, h, k), and the proposed pre- 
trained deep learning (DL) model (c, f, i, l). Each row shows the comparison of SOC maps in a regional area. The spatial resolution of RF and DL model derived maps 
is 90 m, compared to the 250 m resolution for SoilGrids product.

L. Zhang et al.                                                                                                                                                                                                                                   Geoderma 461 (2025) 117466 

10 



covariate data into a two-dimensional feature space (Fig. S2) shows that 
all four regions overlap with the global data, although the extent and 
location of these overlaps vary. This suggests that some of the knowl-
edge or relationships generated from global data can complement 
regional-scale SOC modelling, thereby reducing the difficulty in estab-
lishing soil–environment relationships given limited samples at regional 
scales. As an illustration shown in Fig. 9, by initiating the search from a 
hypothesis space generated by a pre-trained model, optimization algo-
rithms can converge on the best-fitting solution more rapidly and 
effectively. This pre-defined space incorporates knowledge accumulated 
from global datasets, providing a robust foundation for exploring model 
parameters in a local area. It can help the model optimization start from 
a pre-trained global model, which narrows down the initial hypothesis 
space and makes it easier to find a good fit for the regional data. In 
contrast, searches originating from a random starting point in the uni-
versal space often yield longer search times and may struggle to reach 

the optimal result due to the vast number of potential configurations 
involved. A very large initial hypothesis space might lead to higher 
possibility of overfitting, where the model may learn the noise in the 
limited training data rather than the underlying patterns.

It is also crucial to recognize the challenges associated with directly 
relying on global soil map products such as SoilGrids for regional-scale 
studies. Our results indicate that the predicted global soil map products 
may exhibit considerable biases in regions where local sample data were 
not included in the model training process, despite it has been validated 
to have strong global-level model performance. Promisingly, GSoilCPM 
is designed to overcome these biases by effectively integrating local data 
alongside global observations.

3.5. Limitations and future horizons

The current implementation of GSoilCPM primarily focuses on 

Fig. 7. Accuracy improvement with varying sample sizes (a) and baseline accuracies (b). The accuracy improvement is calculated as the percentage increase by using 
the pre-trained deep learning model (GSoilCPM) compared to random forest (RF) model. The accuracy (using the metrics of CCC here) of RF model is adopted as the 
baseline accuracy. Error bars show 90% percentile intervals of accuracy improvement for all modelling runs for each sample size.

Fig. 8. Why GSoilCPM offers an effective modelling strategy for regional soil predictions. The background color gradient represents the variation of model accuracy 
in the hypothesis space (a searchable space of the model function). The optimal location indicates the best model function. Building a pre-trained global model to 
capture the general soil–environment relationships can help narrow the scope of searching regional-scale predictive function. The global-to-regional modelling 
strategy can reduce the risk of falling into local minima when fitting a machine learning (ML) model based on region data alone.
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predicting a single soil property, specifically SOC in the topsoil, which is 
widely concerned for soil health and carbon sequestration. While this 
model has not been applied to predict other soil properties, our bench-
mark test suggests a large potential of adopting this modelling concept 
for enhancing regional predictions of all soil properties. This prompts 
further investigation to ascertain whether similar modelling techniques 
can generalize effectively to other soil mapping tasks. Additionally, how 
to modify the model to take account for the variations of soil properties 
across different soil depths is an open question. Developing a whole- 
profile pre-trained model certainly needs further explored in future 
work. Furthermore, the next version of the GSoilCPM framework could 
be expanded by adding a modular sub-network designed to handle 
region-specific inputs (e.g., high-resolution agricultural management 
data), which can be integrated during the regional fine-tuning stage 
when reliable local data are available.

While the statistical average of model accuracy show improvement 
across all four study areas, the results reveal a high degree of variability. 
The large variance in the degree of model improvement suggest that 
enhancements cannot be consistently attained across all modelling in-
stances. Some regions or data availability conditions could exhibit less 
pronounced gains. This variability necessitates caution when trans-
ferring models and suggests that further studies are needed to identify 
situations where the pre-trained model may underperform.

There are promising horizons for future research and development 
related to the GSoilCPM model. One key direction involves expanding 
the model to predict multiple soil properties simultaneously. Imple-
menting a multi-task learning framework could allow us to generalize its 
findings across various soil attributes and depths. Moreover, ongoing 
investigations into optimizing the model performance under different 
regional conditions should continue. This includes determining the 
optimal sizes and resolutions of model inputs, and expanding the model 
structure to allow the inclusion of specific local dataset, such as the extra 
inputs reflecting human activities for a region. Maximizing the model 
applicability from these perspectives will be a promising development 
direction to improve GSoilCPM’s predictability across diverse contexts.

4. Conclusion

This study presents GSoilCPM, an innovative deep learning frame-
work designed to advance the prediction and mapping accuracy of soil 
organic carbon at regional scales. By integrating global soil datasets with 
environmental covariates derived from satellite-based observations, our 
proposed modelling strategy effectively addresses a critical knowledge 
gap on how to use the global-scale soil–environment relationships 

learned from global databases to enhance the regional-scale soil pre-
dictions with limited regional soil data. The results in four study areas 
prove that GSoilCPM, when fine-tuned for regional contexts, signifi-
cantly outperforms models trained exclusively on regional data. The 
relationships between model improvement, regional sample size, and 
baseline accuracy that without using pre-trained model, revealed in our 
study, are crucial for understanding how the performance of GSoilCPM 
changes under different conditions. Our analyses also indicate that, re-
gions with fewer soil samples and/or lower baseline accuracy can 
benefit more from using the pre-trained global-scale model, under-
scoring the importance of leveraging global-scale observations to over-
come local data limitations.

In summary, the insights gained from this study are valuable for 
better informing the next generation of soil modelling and mapping 
methodology. The advent of the modelling approach using GSoilCPM 
signifies a transformative advancement in soil mapping, particularly in 
enhancing regional soil predictions by bridging global- and regional- 
scale soil–environment relationships. The breakthroughs offered by 
the ‘global-to-regional’ transfer deep learning model extend beyond 
mere predictive enhancements, it represents a potential new paradigm 
in the methodology of soil mapping itself. By embracing a model that 
synergizes local insights with global knowledge, scientists and land use 
managers can achieve a data- and model-reusable approach to under-
stand soil variations more accurate. Such integration not only optimizes 
existing information but also drastically improves the modelling effi-
ciency in regional soil predictions, positioning GSoilCPM as a new 
pivotal tool in advancing the field of soil monitoring and land 
management.
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Appendix A. . More details of GSoilCPM

Appendix A. 1. Convolutional neural networks in GSoilCPM

The convolutional neural networks (CNNs) are adopted in the proposed GSoilCPM framework for extracting latent features from spatial infor-
mation of environmental covariates. CNNs are designed to handle grid-like data such as raster images. The convolutional layer is the most important 
building block of a CNN. The convolution operation applies a filter (kernel) over the input. For example, if there is a 2-D data used as the input, a 2-D 
kernel can be adopted to detect features of the input data (Fig. A1a). The kernel is a set of weights, which allows to detect features in the input data. 
Each unit in the output is a weighted sum of a local patch of input values, defined as: 

zi,j = (x*k)i,j =
∑h

u=1

∑w

v=1
xí ,j́ • wu,vwith

{
í = u • sh + h − 1
j́ = v • sw + w − 1 (1) 

where zi,j is the output of the unit located in row i, column j in feature map of a convolutional layer; h and w are the height and width of the kernel 
(receptive field); sh and sw are the vertical and horizontal strides; xí ,j́  is the unit located at row í , column j́  in the input; wu,v is the weight between any 
unit in feature map and its input located at row u, column v (relative to the unit’s receptive field). The local weighted sum is then passed through a non- 
linear transfer function. The outputted units in a convolutional layer are organized and are referred to as the feature map. All units in a feature map 
share the same kernel. This shared-weights strategy was used because we consider the local statistics of input images and their signals are invariant to 
location (Goodfellow et al., 2016; LeCun et al., 2015). Most importantly it means once the CNN has learned to recognize a pattern in one location, it 
can recognize it in any other location. In practice, multiple kernels are used in each convolutional layer to extract different types of spatial features, 
making it capable of detecting multiple features simultaneously in the input data.

After the convolution operation, the max pooling operation is a useful further stage. The role of the pooling layer is to merge semantically similar 
features into one. This operation can reduce the computational load, the memory usage, and the number of parameters (thereby limiting the risk of 
overfitting). Max pooling slides a window over the feature map and aggregate values into the maximum value from each window (Fig. A1b).

In a typical CNN architecture, two or three stages of convolution, non-linearity and pooling are stacked, then followed by more convolutional 
layers, non-linearity and pooling. In our study, CNNs allow GSoilCPM to learn spatial features from different environmental covariates that influence 
soil, such as terrain structure, vegetation patchiness, and climatic gradients, directly from raster inputs with different spatial resolutions.

Fig. A1. The convolution layer (a) and the pooling layer (b) as the core building blocks in a convolutional neural network (CNN).

Appendix A. 2. Multi-layer neural network and forward computation

As all feature vectors extracted by CNNs are then concatenated into a single and longer vector, this allows the multi-layer neural network to process 
this vector for extracting the interactions among these features. A perceptron is a fundamental building block in multi-layer neural network (Fig. A2a). 
It is essentially a single-layer neural network that can compute a weighted sum of its inputs, and then uses an activation function to produce an output: 

h = ϕ
(
wT • x+ b

)
(2) 

where x is the input vector; w provides the weights of a linear transformation and b is the bias; ϕ( • ) represents an activation function which is often set 
to be a nonlinear function such as the rectified linear activation function (ReLU); h is the output.

A multi-layer neural network is composed of an input layer, one or more hidden layers, and a final output layer (Fig. A2b). All units except a bias in 
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a layer are fully connected to the previous layer. This multi-layer structure enables learning of abstract, hierarchical representations, essential for 
generating the complex and nonlinear relationships among multiple environmental covariates influencing soil variations.

Fig. A2. The perceptron (a) as a fundamental building block in a multi-layer neural network (b).

Appendix A. 3. Backpropagation and gradient-based optimization

Training the deep neural network involves minimizing the error between predicted and observed SOC values using backpropagation and gradient 
descent. The prediction error can be calculated using the mean squared error which is considered as the loss function L (described in Section 2.4). The 
backpropagation procedure to compute the gradient of L with respect to the weights in GSoilCPM is fundamentally an application of the chain rule for 
derivatives. The key insight is that the gradient of the loss with respect to the model parameters in a layer can be computed by working backwards from 
the gradient with respect to the output of that layer. According to Taylor’s theorem, for a differentiable function such as L (θ), a small perturbation s 
leads to: 

L (θ+ s) ≈ L (θ)+ s • ∇L (θ) (3) 

where ∇L is the gradient of L . This motivates the use of gradients in minimizing L . In neural networks, the chain rule of derivatives allows 
backpropagation equation can be applied repeatedly to propagate gradients through all layers. In gradient descent, the first order gradient is used, and 
we set: 

s = − η • ∇L (θ) (4) 

where η (η > 0) is called the “step size” or “learning rate”, which is usually set to be small to ensure L (θ+s) ≤ L (θ). The direction of the negative 
gradient moves the function’s output toward the local minimum. Therefore, the model parameters θ can be updated by: 

θ←θ − η •
∂L

∂θ
(5) 

There are some faster and more stable convergence than regular gradient descent optimizer. In this study, we adopted Adam optimizer (Kingma and 
Ba, 2017), which adjusts the learning rate adaptively during training.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.geoderma.2025.117466.

Data availability

All data used in the analysis are publicly accessible. The WoSIS soil 
profile data were obtained from a published snapshot (September 2019) 
archived at https://doi.org/10.17027/isric-wdcsoils.20190901. The 
SoilGrids (version 2.0) database can be accessed at https://soilgrids.org. 
The climate data are available in the WorldClim version 2.0 database 
(https://worldclim.org). The global lithological map database is avail-
able at https://doi.org/10.1594/PANGAEA.788537. The global digital 
elevation model (DEM) data are available at https://doi. 

org/10.5066/F7DF6PQS. The global dataset comprising of multiple 
topographic features (Geomorpho90m) is obtained from https://doi. 
org/10.5069/G91R6NPX. The MODIS BRDF/Albedo and vegetation 
indices products are available at https://ladsweb.modaps.eosdis.nasa. 
gov.

The codes for processing data have been deposited into a repository 
at https://github.com/leizhang-geo/GSoilCPM.git. The pre-trained 
model (GSoilCPM) is also stored in this repository.

L. Zhang et al.                                                                                                                                                                                                                                   Geoderma 461 (2025) 117466 

14 

https://doi.org/10.1016/j.geoderma.2025.117466
https://doi.org/10.17027/isric-wdcsoils.20190901
https://soilgrids.org
https://worldclim.org
https://doi.org/10.1594/PANGAEA.788537
https://doi.org/10.5066/F7DF6PQS
https://doi.org/10.5066/F7DF6PQS
https://doi.org/10.5069/G91R6NPX
https://doi.org/10.5069/G91R6NPX
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://github.com/leizhang-geo/GSoilCPM.git


References

Amatulli, G., McInerney, D., Sethi, T., Strobl, P., Domisch, S., 2020. Geomorpho90m, 
empirical evaluation and accuracy assessment of global high-resolution 
geomorphometric layers. Sci. Data 7, 162. https://doi.org/10.1038/s41597-020- 
0479-6.

Awais, M., Naseer, M., Khan, S., Anwer, R.M., Cholakkal, H., Shah, M., Yang, M.-H., 
Khan, F.S., 2023. Foundational Models Defining a New Era in Vision: A Survey and 
Outlook. https://doi.org/10.48550/arXiv.2307.13721.

Batjes, N.H., Calisto, L., de Sousa, L.M., 2024. Providing quality-assessed and 
standardised soil data to support global mapping and modelling (WoSIS snapshot 
2023). Earth Syst. Sci. Data 16, 4735–4765. https://doi.org/10.5194/essd-16-4735- 
2024.

Batjes, N.H., Ribeiro, E., Van Oostrum, A., 2020. Standardised soil profile data to support 
global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 12, 
299–320. https://doi.org/10.5194/essd-12-299-2020.

Batjes, N.H., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., Mendes de Jesus, J., 
2017. WoSIS: providing standardised soil profile data for the world. Earth Syst. Sci. 
Data 9, 1–14. https://doi.org/10.5194/essd-9-1-2017.

Behrens, T., Zhu, A.-X., Schmidt, K., Scholten, T., 2010. Multi-scale digital terrain 
analysis and feature selection for digital soil mapping. Geoderma 155, 175–185. 
https://doi.org/10.1016/j.geoderma.2009.07.010.

Bishop, T.F.A., McBratney, A.B., Laslett, G.M., 1999. Modelling soil attribute depth 
functions with equal-area quadratic smoothing splines. Geoderma 91, 27–45. 
https://doi.org/10.1016/S0016-7061(99)00003-8.

Bliss, N.B., Waltman, S.W., Petersen, G.W., 1995. Preparing a soil carbon inventory for 
the United States using geographic information systems, in: Soils and Global Change. 
CRC Press, Boca Raton, FL, pp. 275–295.
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