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A B S T R A C T   

Monitoring and modelling soil organic carbon (SOC) in space and time can help us to better understand soil 
carbon dynamics and is of key importance to support climate change research and policy. Although machine 
learning (ML) has attracted a lot of attention in the digital soil mapping (DSM) community for its powerful ability 
to learn from data and predict soil properties, such as SOC, it is better at capturing soil spatial variation than soil 
temporal dynamics. By contrast, process-oriented (PO) models benefit from mechanistic knowledge to express 
physiochemical and biological processes that govern SOC temporal changes. Therefore, integrating PO and ML 
models seems a promising means to represent physically plausible SOC dynamics while retaining the spatial 
prediction accuracy of ML models. In this study, a hybrid modelling framework was developed and tested for 
predicting topsoil SOC stock in space and time for a regional cropland area located in eastern China. In essence, 
the hybrid model uses predictions of the PO model in unsampled years as additional training data of the ML 
model, with a weighting parameter assigned to balance the importance of SOC values from the PO model and real 
measurements. The results indicated that temporal trends of SOC stock modelled by PO and ML models were 
largely different, while they were notably similar between the PO and hybrid models. Cross-validation showed 
that the hybrid model had the best performance (RMSE = 0.29 kg m− 2), with a 19 % improvement compared 
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with the ML model. We conclude that the proposed hybrid framework not only enhances space-time soil carbon 
mapping in terms of prediction accuracy and physical plausibility, it also provides insights for soil management 
and policy decisions in the face of future climate change and intensified human activities.   

1. Introduction 

Soil organic carbon (SOC) is a key component of soil health and plays 
an important role in regulating the global carbon cycle (Crowther et al., 
2016; Lehmann et al., 2020; Friedlingstein et al., 2022). Monitoring and 
modelling SOC in space and time can help understand SOC changes and 
thus support predicting and mitigating future climate change (Rumpel, 
2019; Bossio et al., 2020; Padarian et al., 2022b). However, temporal 
variation of SOC is usually small compared to its spatial variation, 
leading to difficulties in capturing SOC dynamics without sufficient 
monitoring data across time. In addition, since carbon stocks in soils 
have complex variations influenced by natural and anthropogenic fac
tors (Zhao et al., 2018; Huang et al., 2022; Q. Wang et al., 2023a), space- 
time modelling of soil carbon using digital soil mapping (DSM) methods 
is challenging. Modelling is particularly challenging in agricultural 
lands that are strongly impacted by human activities (Lal, 2002; Wadoux 
et al., 2021; Padarian et al., 2022a; Huang et al., 2022). 

DSM builds on the concept that soil variation is a resultant of vari
ation in soil forming factors, that in turn are represented by environ
mental covariates. DSM has become the most commonly used approach 
to predict the spatial distribution of soil properties (McBratney et al., 
2003; Minasny and McBratney, 2016). While geostatistical methods 
have been widely used in DSM for many years (Goovaerts, 1999; Heu
velink and Webster, 2001; Heuvelink et al., 2016), in the last decade, 
machine learning (ML) methods have attracted more attention because 
of the advantage of not requiring models with strict statistical assump
tions and its powerful learning ability to adaptively fit the data distri
bution (Brungard et al., 2015; Heung et al., 2016; Lamichhane et al., 
2019; Wadoux et al., 2020; Zhang et al., 2022). ML-based DSM is a data- 
driven approach that typically requires large training datasets, but has 
also demonstrated its validity with limited sample sizes (Zhang et al., 
2021). Most ML-based DSM methods are applied to static cases, that is, 
predicting the spatial variation of soil properties at one point in time or 
predicting it at multiple times by separately modelling each time event. 
Despite recent studies showed that space-time modelling and mapping 
of soil properties with ML is possible (e.g. Ivushkin et al., 2019; Heu
velink et al., 2021; Helfenstein et al., 2022), the prediction uncertainties 
are often too large to obtain statistically significant results about the 
temporal variation (Heuvelink et al., 2021). 

In spite of the powerful learning and predictive ability of ML models 
in the field of DSM, a common criticism is that it is a purely data-driven 
approach, in which it is difficult to embed pedological knowledge or 
soil-related physiochemical laws. This hampers the effective represen
tation of existing pedological knowledge in soil predictions (Hendriks 
et al., 2021) and acknowledgement of physical laws in modelling tem
poral variation of soil properties, such as SOC (Heuvelink and Webster, 
2001). By contrast, some existing process-oriented (PO) models (e.g. 
RothC, Century and Millennial) explicitly describe the accumulation and 
decomposition of SOC over time (Parton et al., 1988; Coleman and 
Jenkinson, 1996; Abramoff et al., 2018, 2022). These models incorpo
rate the effects of physical, chemical and biological processes that in
fluence soil carbon dynamics and turnover rates (Parton et al., 2015; 
Sierra and Müller, 2015; Smith et al., 2020). A comprehensive under
standing of soil carbon change processes through PO models contributes 
to a better generalization and transferability of models (Abramoff et al., 
2022). PO models are specifically designed to simulate soil dynamics, so 
that they are more suited for capturing temporal changes and can 
extrapolate over time under different scenarios. Although we can cali
brate a ML model based on multi-year soil samples with static and dy
namic environmental covariates to model soil variation in space and 

time (Heuvelink et al., 2021; Helfenstein et al., 2022), this approach has 
not yet been able to explicitly and accurately capture the temporal 
variation as well as PO models can. It is therefore desirable to use PO 
models to compensate the shortcoming of ML models in modelling soil 
temporal variation. 

While PO models have important advantages on modelling temporal 
variation of soil, they also have limitations compared with ML models. 
Firstly, using a PO model often requires substantial effort from users to 
understand the detailed processes involved and how these are repre
sented in the model. Secondly, the number of input variables (e.g. plant 
residues, soil temperature and moisture in case of SOC) of PO models are 
limited and usually fixed by the design of the model structure, while ML 
models can be calibrated with a wide range of environmental covariates. 
Thirdly, while there is a wide array of ML model types which can be 
trained by a unified learning framework, PO models are generally 
restricted to express kinetic equations that simulate soil carbon dy
namics, leading to the modelling procedures becoming less flexible. 
Therefore, PO models are often found to be less accurate than ML models 
when the goal is to map the spatial distribution of soil properties 
(Hendriks et al., 2021; Abramoff et al., 2022; Xie et al., 2022). 

Considering the benefits and limitations of PO and ML models 
reviewed above, integrating these two modelling approaches may 
advance our capacity to make more robust soil carbon predictions in 
both space and time. Some efforts have been made to show the potential 
of combining pedological knowledge and process-oriented models with 
ML models. For example, structural equation modelling (Angelini et al., 
2016) and Bayesian belief networks (Taalab et al., 2015) have been used 
to convert a conceptual soil-landscape model or predefined rules of 
expert knowledge into a statistically explicit model. Recently, Xie et al. 
(2022) proposed an integrated approach that includes the RothC output 
as a covariate of a geographically weighted regression kriging model. 
Zhang et al. (2023) used a similar idea that used the output of two PO 
models as additional covariates for a ML model. Although these studies 
showed improved prediction accuracy by using PO model outputs as 
additional covariates, in general, the development of hybrid models 
combining PO and ML methods for spatiotemporal modelling of SOC is 
still scarce. To date, a tangible framework that formalizes the integration 
of the PO model into the ML-based soil carbon modelling in space and 
time is still underdeveloped. Therefore, this study aims to provide a 
novel solution to combine the two types of models, thus addressing one 
of the ten challenges for the future of pedometrics (Wadoux et al., 2021). 

The objectives of this study are to: (i) propose a general hybrid 
modelling framework that integrates PO and ML models; and (ii) eval
uate the performance and applicability of the hybrid method in 
modelling SOC stocks in space and time. The methodology was tested in 
a case study located in a cropland (paddy soils) area in eastern China, 
from 1980 to 2000. The hybrid model was compared with the two in
dividual models and each model was evaluated by analyzing modelling 
results in terms of spatial patterns, temporal trends and prediction 
accuracies. 

2. Materials and methods 

2.1. Study area and datasets 

2.1.1. Study area 
The study area is located in the Hang-Jia-Hu region, which is the 

largest plain in Zhejiang province, China, and is an integral part of the 
Yangtze Delta (Fig. 1a,b). The main cities in the study area are Hang
zhou, Huzhou and Jiaxing. There are twelve counties in this area, 
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covering an area about 7500 km2. The area has a subtropical humid 
monsoon climate with abundant precipitation of about 1300 mm per 
year (Yang et al., 2021). The average annual temperature is around 
16 ◦C, with hot humid summers and cool winters. It is a coastal and 
lacustrine alluvial plain with a low and flat topography in the eastern 
part. Rice (Oryza sativa) is the dominant crop in this area, so most of the 
study area has paddy soils. Most regions in the plain are dominated by 
single cropping rice, the growing season of rice is roughly from May to 
October (Xiao et al., 2021; S. Wang et al., 2023b). 

2.1.2. Soil sample data 
The soil dataset consists of 856 field topsoil samples (0–20 cm) from 

428 locations that were sampled both in 1980 and in 2000 (Fig. 1c,d). 
The SOC content (g kg− 1) was measured for each sample and converted 
to SOC stock (SOCS) (kg m− 2) by: 

SOCS = SOCcontent • BD • (1 − CF) • 0.2 (1)  

where BD is soil bulk density (g cm− 3), and CF is the proportion of coarse 
fragments in the whole soil. As the sample data do not have BD and CF 
values, we extracted these variables from the latest high-resolution 
National Soil Information Grids of China (Liu et al., 2020, 2022). 
Fig. 2a shows histograms of the SOCS values at sample locations in the 
two sampling years. Fig. 2b shows that SOCS at most sampling sites 
increased from 1980 to 2000, with about 0.5 kg m− 2 (~10 %) increase 
on average (Table S1). 

2.1.3. Covariate data 
The environmental covariates selected in this study represent 

topography, climate, vegetation, soil and human activity (Table 1). 
Elevation (ELEV), slope (SLP) and stream power index (SPI) were ob
tained from the Geomorpho90m dataset (Amatulli et al., 2020). Monthly 
mean annual temperature (TMP), precipitation (PRE) and evapotrans
piration (PET) from the TerraClimate dataset (Abatzoglou et al., 2018) 
represent the long-term dynamic climate in the area. The satellite-based 
normalized difference vegetation index (NDVI) was adopted for repre
senting the vegetation factor in the area. The monthly NDVI database 
created by Ma et al. (2022) was used. Fine-scale NDVI spatial informa
tion was extracted from high-resolution MODIS images and integrated 
with long-term temporal observations from the AVHRR database (Ma 
et al., 2022). A map of soil clay content was obtained from Liu et al. 
(2020). For representing human activity, we used fertilizer input data as 
key agricultural management information, considering that the crop
land area experienced a rapid increase in fertilizer use during the 
1980–2000 period (Zhao et al., 2018; Yu et al., 2022). Annual county- 
level data of fertilizer input were obtained and compiled from the Na
tional Bureau of Statistics of China (Chinese Statistical Yearbook, CSY). 

Topography and soil clay content were assumed to be static cova
riates, while all other covariate data were adopted as dynamic variables, 
thus supporting the temporal component of the space-time SOCS 
modelling. Topographic covariates were only used as input for the ML 
model, while all other covariates were used for both the PO and ML 
models. In case of NDVI we used monthly values for the PO model, while 
seasonal means were used for ML model. This was done to avoid using an 
excessive number of vegetation covariates compared to other covariates 
for ML model training. 

Fig. 1. Location (a) and elevation map (b) of the study area. Soil organic carbon stocks at sample locations collected in 1980 and 2000 are shown in (c) and (d), 
respectively. 
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2.2. Process-oriented model (RothC) 

A process-oriented soil carbon model provides a mathematical 
description of SOCS dynamics. The commonly adopted concept in these 
models is to divide the total carbon storage into multiple pools. The 
varying turnover or residence times of organic carbon in different pools 
is represented by using different decay rates of carbon in each pool. 
Mathematically, the decomposition of carbon is usually described by 
first-order kinetics, which means that the decomposition rate of carbon 
stock is proportional to its size (Parton et al., 2015). Many PO models (e. 
g. RothC and Century) were designed based on this structure. In this 
study, we used the RothC model as an example to conduct SOC pre
dictions, it being one of the most widely used soil carbon stock PO 
models and which has also been adopted in paddy soils (Jiang et al., 
2013). 

RothC partitions the total organic carbon over five pools, including 
four active pools (decomposable plant material, DPM; resistant plant 
material, RPM; microbial biomass, BIO; humified organic matter, HUM) 
and one inactive pool, the inert organic matter (IOM) (Fig. S1). The 
decomposition of carbon in each active pool is defined by a first-order 
process with its own decay rate. By also including the carbon input 

(Cinput), the carbon stock (C) dynamics in the five pools is thus given by: 

C(t +Δt) = C(t)+Cinput(t) − m(t) • A • C(t) • Δt (2)  

where C(t) = [CDPM(t) ,CRPM(t) ,CBIO(t) ,CHUM(t) ,CIOM(t) ]T, Cinput(t) =
[
CinputDPM(t) ,CinputRPM,0,0, 0

]T, Δt is a time step (we used monthly time 
steps). CinputDPM and CinputRPM are determined from Cinput by a DPM/RPM 
ratio, for which a default value can be used. A is a matrix determining 
the transition of carbon between pools, and given by: 

A =

⎡

⎢
⎢
⎢
⎢
⎣

kDPM 0 0 0 0
0 kRPM 0 0 0

− α kDPM − α kRPM (1 − α) kBIO − α kHUM 0
− β kDPM − β kRPM − β kBIO (1 − β) kHUM 0

0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

(3)  

where kDPM, kRPM, kBIO and kHUM are the decomposition rate constants for 
each active carbon pool, default values of which have been derived from 
the original field experiments (Jenkinson et al., 1987, 1992). Fractions α 
and β, determined by the clay content of the soil, represent the pro
portion of decomposed carbon that goes to BIO and HUM. The 
remaining part (1 − α − β) is released as CO2 and lost from the system. 

In Eq. 2, m(t) is a rate-modifying factor that depends on external 
variables. In the original RothC model, it includes modifiers a, b and c for 
considering the effects of temperature, moisture and soil cover, 
respectively. These three factors can be determined by using the equa
tions described in Coleman and Jenkinson (1996) (see Table S2 for de
tails). As microbial processes have gradually gained widespread 
attention in soil process models (Allison et al., 2010; Woolf and Leh
mann, 2019), in our study, we added a factor μ to additionally consider 
the biological effect (beyond first-order dynamics) on carbon decay 
rates. Thus, we defined the modifying factor m and the factor μ as: 

m(t) = a(t) • b(t) • c(t) • μ(t) (4)  

μ(t) = μmax
MB(t)

Km + MB(t)
(5)  

where μmax is the maximum value of this rate-modifying factor, MB is the 
microbial biomass, which can be represented by the size of BIO pool in 
RothC, and Km is the Michaelis constant, which represents the value of 
MB at which the reaction rate is at half-maximum (μmax

2 ). All values or 
equations of abovementioned model parameters are presented in 
Table S2. 

The general modelling procedure of RothC consists of a spin up phase 
and a forward phase. The spin up phase initializes the model by 
computing an equilibrium model state under static carbon input and a 
known constant climate and total carbon stock (Gottschalk et al., 2012; 
Smith et al., 2005, 2007). In other words, it divides the carbon stock over 
the five pools. While it is not difficult to compute the equilibrium 
analytically from Eq. 2, it is often computed numerically by running the 
model over a long time period under constant climatic and carbon input 
conditions. In our study, the model was run at each sampling location for 
10,000 years, with average climate data for the two decades prior to the 

Fig. 2. (a) Histograms of soil organic carbon stock (SOCS) data from 1980 and 
2000; (b) Histogram of SOCS change between 1980 and 2000. 

Table 1 
Environmental covariates used in the study.  

Category Covariate name Abbreviation Spatial resolution Used for ML/PO model Reference 

Topography Elevation ELEV 90 m ML Amatulli et al. (2020)  
Slope SLP  ML  
Stream power index SPI  ML 

Climate Temperature TMP 1/24◦ ML, PO Abatzoglou et al. (2018)  
Precipitation PRE  ML, PO  
Evapotranspiration PET  ML, PO 

Vegetation Normalized Difference Vegetation Index NDVI 250 m ML (seasonal), PO (monthly) Ma et al. (2022) 
Soil Clay content CLAY 90 m ML, PO Liu et al. (2020) 
Human activity Fertilizer input FER County-level ML, PO Chinese Statistical Yearbook – CSY 

Note: ML and PO represent the machine learning and process-oriented model, respectively. CSY dataset is available from: https://data.stats.gov.cn 

L. Zhang et al.                                                                                                                                                                                                                                   

https://data.stats.gov.cn


Science of the Total Environment 922 (2024) 170778

5

first sampling period (i.e. 1960—1980). During the spin up phase, we 
used the standard RothC set-up assuming first-order dynamics and set 
the rate-modifying factor μ to 1. The annual carbon input can be initially 
assumed to be an arbitrary value, such as 0.1 kg C m− 2 yr− 1 (Smith et al., 
2007). The difference between the simulated and observed carbon stock 
is then used to adjust the carbon inputs as follows (Smith et al., 2005): 

Ceq
input = C′

input ×
SOCSobs − CIOM

SOCSsim − CIOM
(6)  

where C′
input is the initially assumed arbitrary value of total carbon input; 

Ceq
input is the carbon input required to reach the observed carbon stock at 

equilibrium; SOCSobs and SOCSsim are the observed SOC stock in the 
starting year and the steady-state simulated SOC stock, respectively. 
CIOM has to be defined separately, for this we used the equation provided 
in Falloon et al. (1998): 

CIOM = 0.049×Cobs
1.139 (7) 

Then, the sizes of different SOC pools at equilibrium can be estimated 
using pedotransfer functions (Weihermüller et al., 2013). 

After having calculated the carbon inputs and carbon stocks in 
different pools at the starting year, the model can be run to simulate SOC 
stock and stock change for the time period of interest (from 1980 to 
2000) using climatic data and agricultural practice data from that 
period. The carbon input for each year is ideally derived from time series 
of plant residues and farm manure, but detailed information on these 
variables were not available in our study. Facing the same problem, 
many previous studies assumed that the carbon inputs to the soil is 
proportional to the net primary production (NPP) (Smith et al., 2005; 
Gottschalk et al., 2012; Zhang et al., 2023). Some recent studies pointed 
out that deriving carbon input from remote sensing-based NPP products 
is not realistic, especially in cropland areas (e.g. Minasny et al., 2022). 
Considering that our study area witnessed a marked increase of fertilizer 
use and an increase of agricultural production during 1980–2000 (Zhao 
et al., 2018; Yu et al., 2022; Pu et al., 2024), we therefore assumed that 
carbon input was proportional to fertilizer application, as also noted in 
previous studies in croplands in China (Ge et al., 2015; Zhao et al., 2018; 
Pu et al., 2024). We obtained the fertilizer input per unit area per year 
from county-level agriculture management records in CSY. Thus, the 
carbon inputs during the simulation period were obtained following the 
same approach as described in Smith et al. (2005), but with NPP 
replaced by fertilizer input. 

Two model parameters, μmax and Km, were calibrated using training 
data. We used the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) method (Nocedal and Wright, 2006; Shanno, 1970) to adjust the 
two parameters by minimizing the mean squared error (i.e., the mean 
squared differences between simulated and observed SOC stocks at the 
end of the simulation period) of the training data in a cross-validation 
procedure (see Section 2.4 for the details of model training and 
validation). 

2.3. Combining the process-oriented and machine learning models 

When using machine learning to generate the soil-environment 
relationship, formally, it can learn a functional relationship fml : y←X, 
where X represents the environmental covariates and y is the target soil 
property (e.g. SOCS). If the covariates vary both in space and time and 
observations of the target variable are paired with covariate values of 
the sampling locations and sampling time, we can derive a space-time 
model. However, a ML model fitted with training data collected in a 
limited number of sampling years may not reproduce the dynamic 
behavior well. In the case of SOCS, spatial variation dominates over 
temporal variation which further complicates reproducing dynamic 
variation well (Heuvelink et al., 2021). Hence, if we have a PO model 
that can generate more realistic patterns of soil carbon temporal 
changes, it would be sensible to integrate PO model simulations into 

machine learning and thus improve the soil carbon modelling in space as 
well as in time. 

The basic concept of the proposed hybrid method is to incorporate 
the PO model derived simulations at unsampled years as additional 
training data into the data-driven machine learning model, to achieve 
that the training data span the entire time of interest. The framework of 
this strategy is illustrated in Fig. 3. The overall workflow consists of two 
main steps:  

(1) Calibrate the PO model using the environmental input data X′ and 
observed SOC data y. This involves both the spin up and esti
mation of μmax and Km. Next run the forward phases as described 
in Section 2.2 to get PO predictions for the time period of interest. 
This yields SOC stock simulations for all sampling locations and 
all years between the starting and end year.  

(2) Calibrate a space-time ML model by using both the sample data 
and the simulated data from the PO model. Note that the cova
riates of the ML model (X) is different from the input to the PO 
model (X′), and usually X′⊂X, as described in Table 1. Two loss 
functions were adopted to optimize the model: Lossml,obs measures 
the mean squared difference between the predicted values (ŷ) 
and observed values (y) at sampling locations in the sampling 
years; Lossml,po is the mean squared difference between ŷ and ŷpo 

(PO model simulated values) at sampling locations in the years 
without sampling (i.e., the period 1981–1999). The overall loss 
function was chosen as a weighted sum of the two loss functions, 
and the final predictive model f̂ was obtained by minimizing the 
overall loss function: 

f̂ = argmin
f

[
wp • Lossml,po

(
f (X) , ŷpo

)
+
(
1 − wp

)
• Lossml,obs(f (X) , y)

]
(8)  

where wp is a weighting parameter, ranging from 0 to 1, controlling the 
importance of the PO modelling results (the simulated data) compared 
with the observed SOCS. This weighting parameter is a user-defined 
hyper-parameter that we set to 0.5 as a default, assuming that both 
losses are equally important. Note that setting wp = 0 reverts to a 
common RF model that does not make use of PO model simulations, 
while setting wp = 1 means that all observations are ignored and that the 
RF model builds a meta-model of the PO model. The effect of choosing 
different values of the weighting parameter on the modelling result for 
this study were also analyzed. 

Random forest (RF) regression (Breiman, 2001) was adopted as the 

Fig. 3. Framework of the proposed hybrid model that incorporates the process- 
oriented (PO) model into the machine learning (ML) model. X and X′ represent 
input covariates to the ML and PO model, respectively; ŷ and ŷpo represent 
predicted values from the ML and PO model, respectively; y represents observed 
values. Solid arrows represent the computing direction of data; dotted arrows 
represent the differences (e.g. the mean squared error) among the predicted 
values from the PO and ML model and the observed values, which forms the 
loss functions; dashed arrows show how loss functions were used to optimize or 
calibrate the model. Numbers ① and ② above two dashed arrows indicate the 
order of the model calibration. wp is a weighting parameter which controls the 
importance of two loss functions. 
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ML model in this study. The scikit-learn (Pedregosa et al., 2011) package 
in the Python programming language (Pérez et al., 2011) was used to 
apply the model. Training an RF model or any other ML model with this 
package requires training data, with the option to supply a vector con
taining the weights of each observation. This allowed us to weigh the 
importance of SOCS observations and the PO simulated SOCS. Note that 
since the number of observed and simulated data is not equal, the 
weights assigned to individual simulated points were multiplied by the 
ratio of the number of observed to simulated data (i.e., wp × 2/19 in our 
case study). For the hyper-parameters in RF, ‘n_estimators’ (the number 
of trees in the forest) was set to 200, since previous studies showed that 
this is sufficient to obtain stable results (Wadoux, 2019; Zhang et al., 
2021). Hyper-parameter ‘max_features’ (the number of covariates that 
are randomly selected for each tree building process) was set to the 
default value of the square root of the total number of covariates. 

2.4. Model validation 

The PO, ML and hybrid (POML) model for predicting SOCS were 
validated using five-fold cross-validation (CV). Accuracy metrics were 
calculated to assess individual model accuracy and evaluate the model 
performance. The CV procedure for three models is illustrated in Fig. 4. 
The SOCS observations and PO model simulated data were each divided 
into five equally sized subsets, and the division was performed on each 
year of data to ensure that the five split sets remained consistent within 
each year (i.e., both the observations and simulations from a sampling 
location always ended up in the same fold). Four folds were used as the 
training data to calibrate the model, and the prediction was validated on 
the remaining fold, using only the observations. This procedure was 
carried out five times, each time using a different fold for validation. The 
PO model was trained using data from the four folds in t1 and t2 (i.e., the 
years1980 and 2000 in this study), and only validated on the validation 
set in t2 because the SOCS at all sample locations in t1 were used for 
initializing (spinning up) the PO model. The ML model was trained and 
validated based on the sample data in t1 and t2. The hybrid model was 
trained based on the sample data in t1 and t2 and the simulated data 
belonging to the training set between the two years, while the model 
performance was evaluated on the validation set in sampling years using 
the CV procedure. 

The accuracy metrics of the root mean squared error (RMSE) and the 
concordance correlation coefficient (CCC) were computed from the 
validation samples to assess and compare the performance of all three 
models. 

3. Results 

3.1. Modelling accuracies 

The prediction accuracies of the PO, ML and hybrid models are 
shown in Fig. 5. Density scatter plots show that the predictions are 
generally unbiased when three models were fitted using sample data 
from 1980 and 2000 (Fig. 5a,c,d). However, for the case where we limit 
ourselves to solely using sample data from 1980 to fit a ML model and 
then predicting in 2000, the predictions becomes strongly biased 

(Fig. 5b). When using sample data from both years, the ML model per
formance is better than that of the PO model (0.36 kg m− 2 versus 0.53 
kg m− 2 in RMSE; 0.80 versus 0.63 in CCC). Importantly, our results show 
that the hybrid model has the highest accuracy (RMSE = 0.29 kg m− 2 

and CCC = 0.88). In our study area, the improvement of the hybrid 
POML model compared to the ML model was 10 % in terms of CCC and 
19 % in terms of RMSE. Our cross-validation results thus demonstrate 
that the proposed POML modelling approach can effectively integrate 
the outputs of the PO model into ML to achieve an improved spatio
temporal prediction accuracy. 

3.2. Temporal trends 

The temporal trends of the modelled SOCS by three models are 
shown in Fig. 6. Although the three models show a general increasing 
trend of SOCS from 1980 to 2000, the temporal variations between two 
years derived from PO and ML models are largely different (Fig. 6a,b). 
The PO model shows a trend of smooth variation across time, with a 
slight decline during the first five years and a continuous increase until 
tending to be stable after 1996. The county-level results also show a 
similar general trend (Fig. S2). In contrast, the predictions of the ML 
model show a fluctuating trend of SOCS change. This suggests that only 
using sample data in two sampling years cannot accurately fit a ML 
model to generate a smooth trend of SOCS between the observation 
years, similar to the trend derived from the PO model. It should also be 
noted that the standard deviation of the ML SOCS predictions in each 
year is smaller than that of the PO model simulations. This might be 
because the soil-environment relationship extracted from the ML model 
mostly reflects spatial patterns, thus narrowing down the extrapolation 
ability in the time dimension. However, our proposed POML hybrid 
model generated a temporal trend which is similar to the PO model 
outputs (Fig. 6c). These results indicate that the hybrid approach not 
only improved the modelling accuracy according to the validation on 
observed sample data, but can also adjust to the temporal trend as 
derived for the PO model. 

3.3. The impact of wp on modelling accuracy 

The weighting parameter wp, which controls the importance of 
simulated PO data compared with observed sample data in sampling 
years, has an important impact on the modelling result. Fig. 7 shows the 
cross-validation accuracies of the POML model with different values of 
wp, ranging from 0 to 1 with discrete increases of 0.1 units. The hybrid 
model (0 < wp < 1) always had a better performance than the pure ML 
(wp = 0) or PO (wp = 1) model. Fig. 7 also shows that, in this study, the 
prediction accuracy first increases with increasing values of wp, reaches 
an optimum at wp = 0.3, and then decreases as wp further increases. This 
suggests that the hybrid model can be further improved from the default 
value wp = 0.5 that we had used, by assigning lower weights to the PO 
model simulations compared with that of observations. The reason of 
this recommendation on wp is probably related to the relatively larger 
size of PO derived simulated SOC data compared to the size of observed 
data, and the validation data are only available in the sampling years. 

Fig. 4. Illustration of the cross-validation (CV) procedure for evaluating the performance of three models. The figure shows one of five steps of the five-fold CV. The 
same process is carried out five times by setting a different fold for validation in each step. 
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3.4. Mapping results of SOC stocks 

The spatial distributions of topsoil SOC stocks obtained with the 
POML model from 1980 to 2000 are shown in Fig. 8. An animated GIF of 
annual prediction maps is provided in the Supplementary Materials. The 
spatial pattern of the prediction maps generally matches the sample- 
level SOC distribution. Relatively large SOC stocks are found in the 
eastern two counties (Jiashan and Pinghu counties) and in regions with 
higher elevation in the western part, near to the Yellow Mountain area. 
The lower SOC stocks are observed in southern regions in Tongxiang and 
Haining counties. Comparing the prediction maps based on POML model 
and ML model (Fig. S3), it can be seen that their spatial patterns of SOC 
stocks between the two sampling years are different. The POML model 
derived SOC stock maps show more details with higher spatial variation, 
while the maps generated by the ML model fail to depict such spatial 
variation. This is also reflected in the temporal trend comparison shown 
in Fig. 6, which reveals that the ML model results show a more homo
geneous effect between the observation years. This is probably 
explained by the SOC-environment relationships for the time period 
between the observation years are hardly learned for the pure ML model 
that only considers the data in sampling years. 

4. Discussion 

4.1. Advantages of incorporating process-oriented model into machine 
learning for space-time modelling 

Although ML models have been successfully applied in DSM during 
past decades, most cases were aimed at solving static DSM tasks that 
usually predict or map the soil information for a fixed time or assume 
that soil properties do not vary over time. However, given the increasing 
magnitude of climate change and the intensified anthropogenic impacts 
on natural environments (Steffen et al., 2015; IPCC, 2022), spatiotem
poral DSM should be one of the critical research topics in the present and 
near future (Wadoux et al., 2021; Chen et al., 2022; Huang et al., 2022; 
Pu et al., 2024). As the sample data are usually collected in limited time 
periods in an area, the density of soil sample data is often denser in space 
than in time. Therefore, the soil-environment relationship generated by 
machine learning models might be highly inclined to represent the 
spatial variation during the sampling time. This implies that a purely 
data-driven approach, such as ML-based DSM, cannot reliably be 
extrapolated to other time periods and cannot easily be used for space- 
time modelling. Our results indicate that the ML model fitted based on 
observations in one time period cannot be directly applied to make 
predictions in another time period (Fig. 5b,c), which is mainly because 
soil-environment relationships can change over time. This implies that 
space-for-time substitution, which also has been criticized in ecology 

Fig. 5. Plots of prediction accuracies based on different models. (a) Observed against predicted soil organic carbon stocks (SOCS) for all sample data in the year 2000 
based on the process-oriented (PO) model (RothC); (b) Observations against predictions for validation sets in the cross-validation (including 1980 and 2000 samples) 
based on machine learning (ML) model (random forest); (c) Observations against predictions for all sample data in the year 2000 based on the ML model fitted by all 
sample data in 1980. (d) Simulated SOC stocks between 1980 and 2000 based on PO model versus the corresponding predicted values based on the ML model fitted 
by sample data in 1980 and 2000. Colors indicate the proportion (relative frequency) of data points. Solid line represents the 1:1 line. RMSE, root mean squared error; 
CCC, concordance correlation coefficient. 
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(Damgaard, 2019), is probably not the appropriate way in solving space- 
time DSM tasks. 

A recent study showed that large prediction uncertainties were ob
tained when applying a ML model for space-time SOC mapping, indi
cating that temporal changes of SOC could not realistically be assessed 
(Heuvelink et al., 2021). Our findings showed that the ML-based 
modelling result did not agree well with the modelled temporal trend 
from the PO model. This discrepancy gives rise to the need of combining 
machine learning with process models. The dynamic patterns of SOCS 
modelled by the PO model reflect the mechanistic responses of soil 
carbon to a changing climate and human activities. If the sample data 
are collected in only few sampling years, such as only two years in our 
case study, ML model calibration will likely fail to capture the dynamic 
processes affecting changes in SOCS. The fluctuating trend of SOCS 
derived by the ML model also reveals that a purely data-driven approach 
has difficulties capturing the soil variation across time (Fig. 6b). By 

comparison, the temporal variation of SOCS generated from the PO 
model (Fig. 6a) is more realistic and can be confirmed with evidence 
from previous studies. The small decreasing trend of carbon stocks 
during the first years might result from the rising temperature and the 
decreasing precipitation during those years (Fig. S4), which historically 
had a negative impact on agriculture (Piao et al., 2010). After that, the 
increasing trend of SOCS mainly results from the continuous increase in 
fertilizer input before 2000 (Zhao et al., 2018; Pu et al., 2024), as 
application of fertilizer increases crop dry matter production and 
therefore increases carbon inputs to soils (Schlesinger, 1999). As the 
temporal variation of SOCS predicted by the PO model is more in line 
with real changes, our proposed hybrid framework used simulated 
outputs of the PO model to extend the training data for calibration of a 
machine learning model, which had mainly an effect in the time 
dimension. Thus, the results of this study confirmed that extending the 
training data with PO model simulations substantially improved the 
modelling accuracy, so that it was able to learn the dynamic evolution of 
SOCS in a changing environment (Figs. 5 and 6). 

Some previous studies proposed an alternative approach to integrate 
the PO into DSM (Xie et al., 2022; Zhang et al., 2023). These studies used 
a geostatistical or ML model to generate a map of SOCS at the starting 
year, then used a PO model to simulate yearly SOCS maps by forwarding 
the model from the starting year. The yearly simulated SOCS maps were 
taken as additional dynamic covariates for training the geostatistical or 
ML model. Although the results of these studies showed that this 
improved the spatiotemporal modelling of SOCS, one problem is that 
this approach did not generate a final model that reflects the space-time 
soil-environment relationships, due to the fact that the simulated soil 
carbon data were used as a covariate rather than as a target variable. By 
contrast, our proposed hybrid strategy takes the simulation outputs of 
the PO model and environmental covariates of the corresponding year as 
augmented training data for the fitting of the ML model. This approach 
allows the information on the variation of soil carbon and corresponding 
environmental covariates in the spatial and temporal dimensions to be 
directly used as input into a ML model, thus enabling the space-time soil- 
environmental relationships to be embedded in the training process of 
the final hybrid model. 

4.2. Applicability, limitations and future horizons on POML modelling of 
soil carbon 

Soil carbon modelling in space and time needs a model that reflects 
changes in soil that result from spatial and temporal changes in envi
ronmental conditions. Although the results of our study demonstrate the 
effectiveness of the proposed method, it is importance to it is important 
to recognize its applicability, limitations and possible improvements for 

Fig. 6. Temporal trends of SOCS predicted by the process-oriented model (a), 
machine learning (ML) model (b), and the proposed hybrid method combining 
PO and ML models (c). The solid blue line is the mean value of SOCS across 
years; the shaded blue area represents the standard deviation (±1 SD) around 
the predicted SOCS values at all sampling locations in each year; the yellow 
point and its error bar represent the mean and SD of observed SOCS in two 
sampling years. 

Fig. 7. Cross-validation accuracies (RMSE and CCC) of the hybrid model with 
different sizes of weighting parameter (wp) that controls the importance of 
simulated data derived from PO model compared with observed sample data. 
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future research. 
Prior to combining two types of models, soil mappers need to devote 

careful attention to comprehending variations in SOCS over time within 
the target area, and how such variation can be well represented in PO 
models. Given that SOC changes formulized in a PO model are primarily 
characterized by the turnover rate/time of carbon in soils (Sierra and 
Müller, 2015), evaluating how to precisely use available datasets to 
better estimate carbon inputs and outputs is important before inte
grating models. For calculating the carbon input, our study focused on a 
cropland region and considered a time period of twenty years before 
2000. Given the land management during this period, we decided to use 
recorded information of fertilizer inputs as an important regulator of 
carbon inputs. We also verified that the NPP dataset did not correctly 
reflect the carbon increasing trend in the area, which is inconsistent to 
the approach taken in previous studies (e.g. Xie et al., 2022; Zhang et al., 
2023), but in line with the findings in Yu et al. (2022) and Zhao et al. 
(2018) and comments in Minasny et al. (2022). For modelling SOC in 
other areas or different time periods, other appropriate way of adjusting 
carbon input needs to be carefully considered, since this has a large 
impact on the PO modelling result. For calculating the carbon output, 
the decomposition rates for different carbon pools in the soil should be 
better adjusted to achieve a good fit with the situation in the target area. 
In our case, the Michaelis-Menten function was added into RothC for a 
better approximation of the decomposition rate of carbon in response to 
the biomass increase. In our opinion, this adaptation to the original 
RothC model is justified for this specific case study and for the years 
considered. However, more advanced process-based models, such as 
microbial models (e.g. Luo et al., 2016; Woolf and Lehmann, 2019) and 
the Millennial model that uses measurable SOC pools (Abramoff et al., 
2018, 2022), need more attention to be developed for integration into 
space-time DSM frameworks. 

When integrating PO models into ML, it remains crucial for users to 
assess whether the assumptions inherent in the chosen PO model align 
with the conditions in the study area. Especially in croplands, different 
land management policies would lead to diverse pathways of soil 
development and carbon dynamics. For instance, the cultivation of crops 
in submerged or non-waterlogged soils also impacts the sensitivity of 
carbon flux, and it requires more studies on how to appropriately adjust 
the models for such different soil conditions. The integrated modelling 
results could be further improved by fine-tuning the calibration of the 
PO model, among others using additional detailed agricultural man
agement and land use datasets. 

It should be noted that the extended training data from PO model 
simulations are not substitute for real observations, because a PO model 

is a simplified representation of reality that does not perfectly describe 
the complex real-world process of soil dynamics. Thus, quantifying the 
uncertainty in POML modelling needs to be considered. In this study, the 
uncertainty in PO simulations between sampling years compared to that 
in ML predictions in sampling years might be reflected when optimizing 
the weighting parameter wp. How to accurately quantify uncertainties in 
PO and ML models as well as the uncertainty resulting from integrating 
models is also a worthy future research question. Beyond the RothC and 
RF models adopted in our case study, the comparison of other models 
and incorporating multiple PO and ML models can help to improve 
predictions and quantify the uncertainty in space-time SOC modelling. 

In our study we benefited from a sampling design where the same 
location was sampled again after a period of time. In areas where sam
pling locations are not revisited, the calibration of a PO model will be 
much more difficult and will lead to larger uncertainty. For ML models, 
it is still unclear what accuracy improvement is achieved by having 
revisited samples and how this influences the space-time modelling. 
Since soil sampling at different times is often not at the same locations, 
due to different sampling purposes and land use changes, how to tackle 
the problem of modelling SOC dynamics with soil observations at 
different locations across time within the POML framework is a potential 
research topic. 

The space-time soil-environment relationships generated from the 
hybrid POML model can also be useful for improving the ability to 
predict soil carbon changes in the future under different climate sce
narios or socio-economic pathways. Although we did not have revisited 
sample data from recent years in the study area to validate future pre
dictions of the POML model, our results suggest that we can be more 
confident about SOCS predictions for the future generated by the POML 
model than by the ML model. However, it is recommended that this is 
rigorously tested, also in other study areas. 

5. Conclusions 

In this paper, we proposed a hybrid POML model to provide a new 
approach for space-time SOCS modelling. Since the density of soil 
sample data is often much sparser in time than in space, it is beneficial to 
constrain ML models to follow the temporal dynamic pattern of a PO 
modelling result. The proposed general hybrid framework takes PO 
model simulated SOCS data at sample points as extended training data 
for a machine learning model, and adapts the loss function so that the 
training process can consider both the sample data and the PO model 
simulations. The results of our case study show that a hybrid approach 
can effectively combine the advantages of process-oriented soil carbon 

Fig. 8. Prediction maps of SOCS in six selected years from 1980 to 2000 as derived using the hybrid POML model.  
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models and machine learning models. This approach not only constrains 
the ML-based modelling to be aligned to the SOC dynamic pattern 
generated by the PO model, but also makes up for the deficiency of a PO 
model in spatial prediction. We highlight that integrating PO and ML 
models is a promising future avenue for dynamic soil mapping. The 
proposed general framework also allows future studies to incorporate 
more advanced models or fuse multiple models to achieve more robust 
soil organic carbon predictions in space and time. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2024.170778. 
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Klumpp, K., 2020. How to measure, report and verify soil carbon change to realize 
the potential of soil carbon sequestration for atmospheric greenhouse gas removal. 
Glob. Chang. Biol. 26, 219–241. https://doi.org/10.1111/gcb.14815. 

Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., 
Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., 
Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B., Sörlin, S., 2015. Planetary 
boundaries: guiding human development on a changing planet. Science 347, 
1259855. https://doi.org/10.1126/science.1259855. 

Taalab, K., Corstanje, R., Mayr, T.M., Whelan, M.J., Creamer, R.E., 2015. The application 
of expert knowledge in Bayesian networks to predict soil bulk density at the 
landscape scale: the application of expert knowledge in Bayesian networks. Eur. J. 
Soil Sci. 66, 930–941. https://doi.org/10.1111/ejss.12282. 

Wadoux, A.M.J.C., 2019. Using deep learning for multivariate mapping of soil with 
quantified uncertainty. Geoderma 351, 59–70. https://doi.org/10.1016/j. 
geoderma.2019.05.012. 

Wadoux, A.M.J.-C., Minasny, B., Mcbratney, A.B., 2020. Machine learning for digital soil 
mapping: applications, challenges and suggested solutions. Earth Sci. Rev. 210, 
103359 https://doi.org/10.1016/j.earscirev.2020.103359. 

Wadoux, A.M.J.-C., Heuvelink, G.B.M., Lark, R.M., Lagacherie, P., Bouma, J., Mulder, V. 
L., Libohova, Z., Yang, L., McBratney, A.B., 2021. Ten challenges for the future of 
pedometrics. Geoderma 401, 115155. https://doi.org/10.1016/j. 
geoderma.2021.115155. 
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