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of Geography, University of Wisconsin-Madison, Madison, WI, USA

ABSTRACT
Sampling design can significantly reduce the uncertainty in geo-
spatial predictions. In this paper, we developed an adaptive
uncertainty-guided stepwise sampling (AUGSS) method to select
sampling locations to supplement existing legacy sample points
whose representation should be improved. The proposed method
selects supplemental samples in a stepwise manner as guided by
an objective function with two weighted sub-objectives. One
reduces the area with high prediction uncertainty, and the other
minimizes the overall prediction uncertainty for the entire area.
The method takes an adaptive approach to adjust weights for the
two sub-objectives and to tune an uncertainty threshold control-
ling whether a location can be reliably predicted during the sam-
pling procedure. A case study on soil property prediction shows
that AUGSS outperforms the stratified random sampling (SRS) and
the non-adaptive uncertainty guided sampling method (UGSS) in
terms of RMSE and Lin’s concordance correlation coefficient with
different sample sizes. This study shows that the AUGSS method
offers a potential for effectively adding supplemental samples to
existing samples which are insufficient for spatial prediction. The
adaptive strategy guided by predicted uncertainty provides an
efficient support to improve the spatial pattern of samples, which
plays a key role in the result accuracy of geospatial predict-
ive mapping.
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1. Introduction

Obtaining information on the spatial distribution of natural resources is one of the
important issues in geographical information science (Goodchild et al. 1992, 1993, Zhu
et al. 2001, 2018, 2021, Shekhar et al. 2011, Jiang and Shekhar 2017, Wadoux et al.
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2020). Information on spatial variation of some geographical variables, such as water
and vegetation cover, can be directly observed by remote sensing techniques.
However, spatial variation on some other geographical variables, such as soil classes/
properties, hazard susceptibility and habitat suitability, are difficult to be observed dir-
ectly using remote sensing techniques (Zhu et al. 2018). Spatial prediction (spatial pre-
dictive mapping) based on field samples is an effective way to obtain the spatial
variation of these geographical variables (Webster and Oliver 1990, de Gruijter et al.
2006). One of the key requirements for spatial prediction based on field samples is
that the field samples used should represent the area under concern well (Zhu et al.
2015, Zhu and Turner 2022).

A sample set is a subset of a population. Typically, making a complete enumeration
of all elements in the population is impractical because the population is very large.
Thus, collecting a manageable size of samples, which can represent the population
well, is often desired in spatial prediction is practical and can make inferences from
the sample to the population (Peck et al. 2015). Much effort has been devoted
towards developing sampling methods for spatial prediction, such as simple random
sampling based on the classical sampling theory (Kish 1965, Cochran 1977, Brus and
de Gruijter 1997), spatial coverage sampling (Royle and Nychka 1998, Brus et al. 2006,
Ma et al. 2020a), and sampling with the help of auxiliary information (environmental
covariates) (e.g. Minasny and McBratney 2006, Brus and Heuvelink 2007, Zhu et al.
2008, Wadoux et al. 2019a, Zhang et al. 2022b). Many studies have shown that sam-
pling in the feature space can achieve a higher prediction accuracy with a limited
number of samples (Hengl et al. 2003, Brus and Heuvelink 2007, Zhu et al. 2008, Yang
et al. 2013, 2016, Wadoux et al. 2019a). However, most of the methods mentioned
above did not consider how to incorporate legacy samples into the sampling designs
when such samples are available. Therefore, studies on supplemental sampling in spa-
tial prediction are desired.

In practice, legacy samples are sometimes available within a study area (Carr�e et al.
2007, Stumpf et al. 2016). These samples are often limited in number and with low or
biased representation of the study area due to a variety of reasons and the use of
these samples along would lead to large uncertainty in spatial prediction. However,
legacy sample points are not without use as they inherently contain knowledge and
understanding of the local geographical environment. They are valuable resources for
spatial predictions, especially when sampling budgets are limited (Rossiter 2008,
Zhang et al. 2016, 2021). This requires researchers to collect additional samples for
their study area to improve the level of representation of these legacy samples (Zhu
et al. 2015, Li et al. 2016, Zhang et al. 2016).

One way to guide the supplemental sampling procedure is to use the prediction
uncertainty generated from spatial prediction based on the existing legacy sample
points. There are two basic approaches to collect additional samples to supplement
legacy samples based on the uncertainty of prediction: one is based on the uncer-
tainty related to the spatial distribution of existing samples that have insufficient or
uneven coverage in geographical space (Brus and Heuvelink 2007, Stumpf et al. 2017,
Wadoux et al. 2019b), other one is based on the uncertainty as measured by environ-
mental similarity (Zhu et al. 2015, Zhang et al. 2016). Zhu et al. (2015) proposed an

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 477



individual predictive soil mapping (iPSM) method for predicting soil maps with limited
sample data. Under the basic assumption that the more similar environmental condi-
tions between two locations lead to more similar in soil properties (Hudson 1992),
now referred to as the geographic similarity principle (Zhu et al. 2018), in that study
the similarity between sample points and unvisited points can be calculated by the
similarity of their multiple environmental covariates. Then, the predicted value at an
unvisited location can be determined by integrating observed values at sample loca-
tions with high environmental similarity to that unvisited location. The prediction
uncertainty at a location can be quantified and has a negatively relationship with its
environmental similarity to sample locations (Zhu et al. 2015, Zhang et al. 2016). If an
unvisited location has a low similarity to the existing samples, the prediction uncer-
tainty for that unvisited location is high and the existing samples do not represent the
location well. Since the positive relationship between prediction uncertainty and pre-
diction residuals was significant (Zhu et al. 2015, 2018), it is reasonable to prioritize
the design of supplemental sample points in the area with high prediction uncertainty.
Based on this concept, Zhang et al. (2016) proposed a heuristic sampling scheme to
select supplemental samples directed by the prediction uncertainty (Zhu 1997, Zhu
et al. 2015). This method consists of two main stages. The first stage is to select new
samples to reduce the ‘NoData’ area (the area with the uncertainty higher than a cer-
tain threshold and the prediction at this area cannot be reliably made due to the poor
representative by existing samples) as small as possible, which is also named as the
‘gap-filling’ stage. The second stage is to further select additional samples to reduce
the overall prediction uncertainty as low as possible, named as the uncertainty reduc-
tion stage. This sampling method can integrate the legacy samples with additional
new samples effectively. In addition, the method can provide the order in which the
supplemental samples should be collected based on the contributions to the reduc-
tion of uncertainty. Li et al. (2016) adopted this method and improved it by consider-
ing the prediction uncertainty both from the feature domain and the spatial domain.

Although the earlier proposed supplemental sampling method achieved the pur-
pose of improving the prediction accuracy guided by the prediction uncertainty
(Zhang et al. 2016), there were still some disadvantages in this sampling method.
Firstly, the overall workflow of the sampling method was complicated. Too many
parameters needed to be decided subjectively. For example, the clustering algorithm
needs to be conducted within each iteration in the uncertainty reduction stage, which
is time-consuming to choose the optimal number of clusters by numerous trials.
Secondly, the two-stage sampling strategy forces the calculation to be divided into
two separate phases. The transition from the first stage to the second stage requires
subjective judgment. Thirdly, the previous method lacks an adaptive adjustment strat-
egy for the uncertainty threshold, which controls the ‘NoData’ areas where the supple-
mental sample points can be designed. The subjective determination of the threshold
leads to the inability of users to complete the sampling design in a fully automated
process. These deficiencies make this sampling method difficult to use in practice.
Therefore, it is desirable to develop an adaptive supplemental sampling method to
increase the effectiveness and applicability of this kind of uncertainty-guided sam-
pling method.
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To address the aforementioned problems, we proposed an adaptive uncertainty-
guided stepwise sampling (AUGSS) method, which aims to reduce the complexity and
the subjective manual interactions in the designing process. The proposed method
unifies the two stages in the previous method together and adaptively adjusting the
parameters so that the method can achieve the dual goals of reducing the ‘NoData’
area and reducing the overall prediction uncertainty simultaneously.

The rest of this paper is organized as follows: Section Methodology introduces the
theoretical background of the proposed sampling method and describes details of the
algorithm; Section A Case study on soil sampling introduces a case study to demon-
strate the approach; Section Results examines the method by comparing it with the
stratified random sampling (SRS) and the non-adaptive uncertainty guided stepwise
sampling (UGSS) methods; Section Discussion discusses the impact of parameters and
the applicability of the method; Section Conclusions concludes this paper.

2. Methodology

2.1. Basic concept and overall design

Based on the prediction uncertainty map derived from the environmental similarity
between sample locations and unvisited locations (Zhu et al. 2015, 2018, Zhang et al.
2016), the basic concept of the proposed supplemental sampling method is to select
samples at locations with high uncertainty so that it can quickly extend the area that
can be reliably predicted and reduce the overall prediction uncertainty. To achieve
this goal efficiently, the proposed AUGSS method was designed to simultaneously
achieve the dual objective of reducing the ‘NoData’ area and reducing the overall pre-
diction uncertainty by selecting as few samples as possible. The ‘NoData’ area is deter-
mined by an uncertainty threshold, that is, the locations with the prediction
uncertainty higher than a threshold. Since we usually need to avoid excessively high
uncertainty in certain regions within a study area, therefore, sampling in the ‘NoData’
area needs to be given higher priority. Nevertheless, as the final objective is to reduce
the overall uncertainty, it is also necessary to consider how much uncertainty can be
reduced by the new sample points. Therefore, it is reasonable to combine the two
sub-objectives, rather than separate them into two different stages. In the proposed
method, these two objectives can be optimized simultaneously in one step. Moreover,
as the importance of each of these two sub-objectives will change with the increase
of the number of supplemental samples, we included two weighting parameters for
controlling the importance to allow the sampling method to adaptively change the
weights and the uncertainty threshold at each iteration of sampling. The overall frame-
work of the proposed method is shown in Figure 1 and consists of the follow-
ing procedures:

1. Calculate the similarity between each unvisited location and the existing sample
set. The calculation of the environmental similarity is described in Section
Quantification of environmental similarity and prediction uncertainty.

2. Generate the prediction uncertainty map based on the environmental similarity
between unvisited locations and the sample set. Refer to Section Quantification of
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environmental similarity and prediction uncertainty for the calculation of predic-
tion uncertainty.

3. Adaptively update the weighting parameters for each sub-objective and the
uncertainty threshold. The detail of the adaptive approach for adjusting parame-
ters is described in Section Adaptive approach for adjusting parameters

4. Calculate the objective function derived from a weighted combination of two
sub-objective functions. The construction of the objective function is described in
Section Construction of objective function.

5. Take the unvisited points in the high uncertainty area, where the prediction
uncertainty values are larger than the threshold, as the candidate points. Then go
through all candidate points and select the point that can minimize the objective
function as a new supplemental sample and include this new sample into the cur-
rent sample set.

6. Repeat the step (1)-(5) until the change of the objective function value is very
small or the number of samples reaches the desired size.

2.2. Objective function based on prediction uncertainty

Based on the basic concept of uncertainty-guided sampling outlined in Section Basic
concept and overall design, the selection of supplemental samples is determined by
the objective function. The environmental similarity and its derived prediction uncer-
tainty need to be defined for constructing the function. The calculation of the similar-
ities between sample locations and unvisited locations and the construction of the
objective function are described in the next two subsections.

2.2.1. Quantification of environmental similarity and prediction uncertainty
Quantification of environmental similarity is the basis for quantifying prediction
uncertainty and generating the objective function. The environmental similarity

Figure 1. The overall framework of the proposed supplemental sampling method.
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between the two points is determined by the environmental vector at these two
locations. The environmental vector at location i is defined as:

ei ¼ ðe1i , e2i , . . . , evi , . . . , emi Þ (1)

where m is the number of environmental covariates used. The vth element (evi ) in the
vector represents the value of the vth environmental covariate at ith location.

The similarity between an unvisited location and a sample set can be determined
as follows. The first is at the similarity at the individual environment covariate level
and the second is at the location level which integrates the similarities of different
environmental covariates (Zhu et al. 2015). The calculation is as follow:

S eu, ejð Þ ¼ P Eðe1u, e1j Þ, Eðe2u, e2j Þ, . . . , Eðevu, evj Þ, . . . , Eðemu , emj Þ
� �

, (2)

where evu and evj are the environmental variable values at the unvisited location u and
the sampling location j: E �ð Þ is the function for calculating the similarity at the covari-
ate level, and P �ð Þ is the function for the location level. Specifically, E �ð Þ can be defined
as:

E evu, evj
� � ¼ evu � evj

��� ���
max evð Þ �min evð Þ (3)

The overall environmental similarity between an unvisited location u and a sam-
pling location j can be determined by integrating similarities of all environmental
covariates by conducting the function P �ð Þ: The relative importance of different types
of covariates in influencing the targeted geographical variable needs to be considered
for determining the form of P �ð Þ: The commonly adopted ways include the weighted
average method and a minimum operator based on the Liebig’s Law of the Minimum
(van der Ploeg et al. 1999, Zhu et al. 2015). In this study, a minimum operator was
used as the function P �ð Þ to integrate the environmental similarities after Zhu et al.
(1997, 2015) and Shi et al. (2004) for digital soil mapping, which is used as the case
study in this study. Based on the calculated environmental similarities of a given loca-
tion i to all samples, an ‘environmental similarities vector’ at location i can be derived
and formulated as shown in Equation (4).

Si ¼ S ei, e1ð Þ, S ei, e2ð Þ, . . . , S ei, ejð Þ, . . . , S ei, enð Þ� �
(4)

The ‘environmental similarities vector’ at a location can indicate the degree of how
well it is represented by the sample set. The prediction uncertainty at each location is
inversely related to its environmental similarities. The higher similarity for a location to
the sample locations indicates that this location can be represented by samples well,
and thus, the prediction uncertainty at this location is lower. Therefore, the prediction
uncertainty can be quantified using the following equation:

Ui ¼ 1�max S ei, e1ð Þ, S ei, e2ð Þ, . . . , S ei, ejð Þ, . . . , S ei, enð Þ� �
, (5)

where Ui is the uncertainty at location i: It is expected to be large when the existing
samples cannot represent the unvisited location well. The prediction uncertainty calcu-
lated in this way has been proven to have a positive relationship with the prediction
residual (Zhu 1997, Zhu et al. 2015), so it can be used as an indicator of the prediction
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accuracy. It is necessary to examine whether a location can be reliably predicted by
existing samples with an acceptable uncertainty. If a location with an uncertainty
higher than a prescribed threshold (user provided), the prediction at this location can-
not be reliably made based on user’s specific requirement (Zhu et al. 2015).

2.2.2. Construction of objective function
The objective function consists of two sub-objective functions: O1 is the reduction of
the ‘NoData’ area, and O2 is the reduction of the overall prediction uncertainty. O1 is
quantified by the proportion of the ‘NoData’ area where the prediction uncertainty is
higher than a prescribed threshold. It can be determined as:

O1 ¼
PN

i¼1v Ui � Utð Þ
N

(6)

where Ut is a threshold to control whether a location belongs to the area of high or
low uncertainty and Ut will decrease after the selection of each supplemental samples.
v xð Þ is a conditional function, when x > 0, v xð Þ is equal to 1, otherwise v xð Þ is equal
to 0, the numerator counts the total number of locations (cells or pixels) with high
uncertainty. N is the total number of cells in the whole area.

The second sub-objective function focuses on the reduction of the overall predic-
tion uncertainty. Thus, O2 can be defined by the mean value of the overall prediction
uncertainty:

O2 ¼
PN

i¼1Ui

N
(7)

Finally, the overall objective function is constructed by the weighted combination
of O1 and O2: It is formed as:

O ¼ w1O1 þ ð1�w1ÞO2 (8)

where w1 and (1-w1Þ are the weighting parameter for determining the importance of
each sub-objective. The value of w is between 0 and 1. The adaptive approach for
adjusting these weights is described in the next section.

2.3 Adaptive approach for adjusting parameters

The key issue for automatically selecting the supplemental samples is to solve the
problem of how to design an adaptive approach for adjusting parameters with the
addition of each new sample into the existing sample set. To achieve this automatic
adaptation, approaches need to be developed for automatically adjusting the weight-
ing parameter of sub-objective functions and the uncertainty threshold areas the iter-
ation of sample selection progresses.

2.3.1. Adaptive approach for adjusting the weights
The two sub-objectives are both important for the sampling design. In most cases, it
is necessary to reduce the ‘NoData’ areas at the beginning, because it is desirable that
the whole area can be predicted reliably and the uncertainty at each location can be
controlled within an acceptable range. Therefore, O1 needs to be addressed with a
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higher priority at the beginning of the sampling. Meanwhile, the overall uncertainty
also needs to be considered simultaneously because it is important to find the supple-
mental samples which can reduce the overall prediction uncertainty as much as pos-
sible at the same time. Thus, it is reasonable to adjust the w1 to be smaller with the
decrease of O1, and enlarge the weight of O2 (w1) at the same time. Based on this
concept of the importance of two sub-objective functions, we give the adaptive
change function of w1 as the following:

w1 ¼
PN

i¼1v Ui � Utð Þ
N

 !p

(9)

where p ðp > 0Þ is an exponential parameter which controls the relationship between
O1 and w1: With the increase of p, the attenuation of w1 could be faster. Figure 2
shows an illustration of how w1 change with different values of p:

2.3.2. Adaptive approach for adjusting the uncertainty threshold
Uncertainty threshold is another important parameter in the sampling method
because it controls whether a prediction can be made at a location reliably or not.
With tine inclusion of supplemental samples, the overall prediction uncertainty will
gradually decrease, thus, the uncertainty threshold needs to be adaptively adjusted
downward with the reduction of the overall prediction uncertainty. For example, if the
initial value of the uncertainty threshold is 0.4, and the mean of overall uncertainty
has been reduced to about 0.2 with the increase of supplemental samples, the uncer-
tainty threshold will be too large for the current step. This may lead to a problem that
the area of relatively high uncertainty would be small and the importance of O1 would
be ignored when the uncertainty threshold is much larger than the mean of overall
uncertainty. In this case the areas with relatively high uncertainty but small in size will
never receive any additional sample points. Accordingly, the determination of the
uncertainty threshold needs to take into account the change of the overall prediction
uncertainty in each step. The uncertainty threshold can be adaptively quantified by
the following equation:

Figure 2. A conceptual illustration of the change of parameter p for controlling two weighting
parameters with the change of the proportion of ‘NoData’ area (left for w1 and right for 1-w1).
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Ut ¼ Uinit, Umean � Uinit

Uinit � e�a Uinit�Umeanð Þ, Umean<Uinit

�
(10)

where Ut is the uncertainty threshold; Umean is the mean value of the overall prediction
uncertainty; Uinit is a pre-defined initial value of the threshold with which the initial
‘NoData’ areas were determined. It can be set based on the user’s requirement or as
the mean of overall uncertainty calculated when only the legacy samples are used (as
the default). When Umean � Uinit , Ut is determined as Uinit: When Umean is smaller than
Uinit, Ut is determined by a monotonically decreasing function of Umean: a is a user-
specified parameter (a > 0) which controls the speed of the reduction of Ut: The
reduction speed is going faster if the value of a is larger. An illustration of how Ut

change with different values of a is shown in Figure 3. Ut is ensured to be at least
larger than zero by this function.

With the adaptive approach for adjusting the uncertainty threshold, the deter-
mination of one location whether or not can be reliably predicted could be aligned
with the overall prediction uncertainty. This adaptive approach also gives users the
ability to control the speed of the reduction of threshold. It makes the proposed
method more flexible for the different requirements on the prediction accuracy.

3. A Case study on soil sampling

3.1. Study area and dataset

The proposed method was applied in a case study of digital soil mapping. The study area
was located in Xuancheng City, in Anhui Province, China (Figure 4). The study area is about
5,900 km2. The range of elevation is roughly 0 to 835m. The annual average temperature

Figure 3. A conceptual illustration of the change of parameter a for controlling the uncertainty
threshold (Ut) with the change of the mean of overall prediction uncertainty (Umean). The initial
value of the threshold (Uinit) is 0.5 in this example.
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in this area is about 14 �C, and the annual precipitation is about 1,400mm. The area has a
subtropical humid monsoon climate (Yang et al. 2021b). Based on previous studies in this
area (Yang et al. 2016, 2021a; Zeng et al. 2016, Zhang et al. 2016, 2022a), the following six
environmental variables were selected for the sampling experiment in the study area:
slope (SLP), profile curvature (PRC), planform curvature (PLC), topographic wetness index
(TWI), annual average temperature (TEMP) and annual average precipitation (PRECI). These
selected environmental covariates characterize the topographical and climatic conditions
of the study area. The resolution of these covariates is 90m. Raster maps of these covari-
ates are shown in Figure 5, and the descriptive statistics of the environmental covariates
are given in Table 1. For PRC and PLC, we scaled values to a range of 0� 0.5 if values are
greater than zero, otherwise, the values were scaled to a range of -0.5� 0. All other covari-
ates were normalized to a range of 0� 1.

There are six legacy soil samples collected in the area from the Second National
Soil Survey of China, and 61 independent validation samples collected by a regular
grid with a space of 10 km in the study area (Figure 4). In addition, there were add-
itional 181 samples in the area that support our subsequent test of the proposed sam-
pling method. These samples were collected through several field campaigns in 2011,
2015 and 2016, including 59 samples collected using the integrative hierarchical step-
wise sampling strategy (Yang et al. 2013, Zhang et al. 2022b), 30 samples collected by
the heuristic uncertainty directed sampling strategy (Zhang et al. 2016), 62 samples
collected based on a stratified random sampling strategy, and the remaining samples
were collected based on the environmental similarity-based recommendation (Ma
et al. 2020b). The soil organic matter (SOM) content at the surface layer (0–20 cm) was
taken as the target property for the soil prediction. The dichromate oxidation method
(external heat applied) was used to measure the SOM for each sample (Nelson and
Sommers, 1983, Liu et al. 1996).

Figure 4. The elevation map and the sample points (legacy samples and validation samples) in
the study area.
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3.2. Experimental design

3.2.1. Parameter setting
As it is obvious that the number of legacy samples is too small to represent this large
area (Figure 4), and their spatial distribution also makes it insufficient for digital soil

Figure 5. Maps of environmental covariates in the study area.

Table 1. The characteristic (including minimal (min), mean, median, maximal (max) and standard
deviation (SD)) values of the environmental covariates.
Covariates Min Mean Median Max SD

Slope (�) 0.000 4.376 1.796 64.261 5.992
Profile curvature (�/100m) �0.006 0.000 0.000 0.006 0.001
Planform curvature (�/100m) �0.304 0.000 0.000 0.409 0.009
Topographic wetness index (unitless) 4.207 10.180 8.996 26.244 3.737
Annual average temperature (�C) 11.575 15.220 15.450 15.779 0.567
Annual average precipitation (mm) 1243.164 1401.603 1389.640 1799.904 81.508
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mapping in the area, the proposed sampling method was performed in this study
area. The initial uncertainty threshold Uinit was set to 0.4, which was used in the previ-
ous study (Zhang et al. 2016). The parameter p, which controls the weight of O1 was
set to 1.0, and parameter a was set to 4.0, which can make a moderate speed of the
reduction of the uncertainty threshold. We selected 30 supplemental samples because
the change of the objective function became very small when continuing the sam-
pling procedure.

3.2.2. Evaluating the sampling method based on different predictive models
To evaluate the proposed sampling method, the soil-environmental relationship was
generated based on three different machine learning models, including classification
and regression tree (CART), random forest (RF), and support vector regression (SVR).
The performances of the models were evaluated using the validation samples.

CART is a model to solve classification and regression problems based on a decision
tree (Breiman, 1984). It is constructed by splitting subsets of the dataset using all cova-
riates to repeatedly create two child nodes, and it can partition the data into subsets
that are as homogeneous as possible in terms of the target variable. RF (Breiman,
2001) is a powerful machine learning model, which is widely used in geospatial pre-
dictive mapping ( Wiesmeier et al. 2011, Heung et al. 2014, Hengl et al. 2018, He et al.
2021, Zhang et al. 2021 ). RF uses the voting or averaging strategy for aggregating the
base learners, and it can effectively reduce the risk of overfitting and lead to a good
ability for generalization. The rounded down square root of the total number of cova-
riates was used as the parameter value of the number of covariates that randomly
selected for each tree building process by default (Breiman, 2001). For another model
parameter ntree, which represents the number of trees to be learned in RF, was set as
200, considering the previous studies showed that it is sufficient to obtain stable
results (Lopes, 2015, Wadoux et al. 2019b). SVR is a popular supervised learning
method used for regression (Vapnik, 1995, Drucker et al. 1997), and has been success-
fully adopted for soil prediction (Kova�cevi�c et al. 2010, Were et al. 2015, Heung et al.
2016). Its basic concept is derived from the support vector machine (SVM), which uses
kernel functions to project the data onto a new hyperspace where complex non-linear
patterns can be simply represented. The regularization parameter C, which determines
the trade-off between the training errors and model complexity, was set to 5. It was
carried out using the grid search method using the training data (Kavzoglu and
Colkesen, 2009, Were et al. 2015).

The model performances were evaluated using two prediction accuracy measures:
the root mean square error (RMSE) and Lin’s concordance correlation coefficient (CCC;
Lin, 1989). RMSE and CCC are defined respectively as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Zi � Ẑ i

� �2s
(11)

CCC ¼ 2rrzrẐ

r2
z þ r2�ẑ þ ðZ�Ẑ Þ2

(12)

where Zi and Ẑ i are observed and predicted values respectively; n is the number of
validation samples; Z and Ẑ are the averages of n observed and predicted values,
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respectively; rz and rẐ are the corresponding standard deviations; r is the correlation
coefficient value between the predicted and observed values. A smaller value of RMSE
or a larger value of CCC indicates a higher prediction accuracy. Considering the stabil-
ity of the model performance given that the training sample size is not large, the
model was repeatedly fitted with different random seeds by the designed sample set
10 times, for reducing the influence of randomness in predictive models. The average
RMSE of the ten times was taken as the validation accuracy.

3.2.3. Comparing with other sampling methods
Two other sampling methods, SRS and non-adaptive uncertainty-guided supplemental
sampling (UGSS) proposed by Zhang et al. (2016), were adopted for comparison. SRS
is a commonly used sampling strategy in soil surveys (de Gruijter et al. 2006, Brus,
2019). When an area can be divided into sub-areas (strata) such as different soil parent
material regions, SRS is a suitable choice, and it is usually more efficient than simple
random sampling and can serve as a good benchmark sampling method for compari-
son. There are eight parent materials in the study area, so we divided the area into
eight strata and performed SRS to stepwise collect samples in each stratum. The num-
ber of samples in each stratum depends on the area proportion of the stratum in the
entire study area. All SRS samples were randomly collected from the existing 62 SRS
samples in the area. In order to avoid the randomness caused by SRS, we repeated
the SRS method four times and generated four sets of samples for comparison.

The UGSS method is the original proposed uncertainty-guided sampling method
based on the similarity between existing sample points and unvisited points in the
environmental feature space. The sampling method proposed in this paper was based
on its concept but improve it to be an adaptive approach. Thus, it is critical to evalu-
ate the proposed adaptive sampling method against the non-adaptive method. The
collected samples by UGSS can be referred to Zhang et al. (2016). Constrained by the
sampling resources, the target soil properties of samples generated by AUGSS were
collected from the existing samples (except the validation samples) with the most
similar environmental condition to the designed locations. The similarities between
these designed AUGSS sample points and the existing collected samples were all
larger than 0.9. The prediction uncertainty and validation accuracy with different sam-
ple sizes (six legacy samples plus 10, 20, and 30 supplemental samples) were com-
pared between the three sampling methods.

4. Results

4.1. Evolution of objective functions and adaptive adjustment of parameters

The evolution of the objective function and the adaptive adjusted parameters are
shown in Figure 6. In general, the objection function value (O) and two sub-objective
function values (O1 and O2) generally decreased with the increase of the number of
supplemental samples, and w1 gradually became smaller. At the beginning of sam-
pling, because the proportion of the ‘NoData’ area was large and the optimizing strat-
egy was addressed as a higher priority to select new samples that can maximally
reduce the area with high uncertainty, thus w1 was larger at the first eight steps,

488 L. ZHANG ET AL.



which was also reflected by the decreasing rate of O1 was faster than O2 at the begin-
ning. Meanwhile, with the increase of the supplemental samples, the overall prediction
uncertainty was reduced, and the uncertainty threshold was also adaptively adjusted
(Figure 6(b)). At the early stage, the uncertainty threshold stayed at 0.4 because the
mean uncertainty in the area was larger than 0.4. Then, the uncertainty threshold
declined rapidly, which means that the method had effectively found supplemental
samples that can greatly reduce the uncertainty. With the sample size continued to
increase, the uncertainty threshold became smaller, and this made the demarcation of
the area whether or not can be regarded as predictable became more rigorous.
Therefore, the decreasing rate of w1 became slow after the number of the supplemen-
tal samples reached 15. After this point, ð1� w1Þ increased as a result of the

Figure 6. The evolution of the adaptive adjusted parameters (two weighting parameters (a) and
uncertainty threshold (b)) and the objective function values (c) with the increase of the supplemen-
tal samples.
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proportion of the high uncertainty area became stable at a small value, thus the main
objective for sampling is to reduce the overall prediction uncertainty. The overall evo-
lution of objective functions and adjusted parameters were shown an expected behav-
ior that could adaptively control the sampling procedure to reduce the area with high
uncertainty at first and then reduce the overall prediction uncertainty in the area later.

4.2. Validation and comparison

4.2.1. Comparison of the unpredictable area and prediction uncertainty
The proposed AUGSS method was compared with SRS and UGSS methods. Figure 7(a)
shows the variation of the proportion of the area with high uncertainty (pixels with
prediction uncertainty larger than 0.2) as the number of the supplemental samples
increases. The high uncertainty area was reduced much quickly by the two uncer-
tainty-guided sampling methods. It is an expected behavior since one objective of the
uncertainty-guided sampling is to reduce the high uncertainty area as soon as pos-
sible, which was not considered in SRS. As the UGSS method dealt with the two sub-
objectives separately, it only focused on the reduction of the ‘NoData’ area at the first
stage (i.e. the gap-filling stage), therefore, the decrease of the high uncertainty area
by AUGSS was slightly slower than that of UGSS at the first 12 steps (12 additional
samples). However, after the middle phase of the sampling procedure, the AUGSS
method achieved a lower proportion of the area with high uncertainty than that of
UGSS. The reason is that the non-adaptive method did not consider the reduction of
the relatively high uncertainty area when it switched into the second stage (i.e. the
uncertainty reduction stage), while the AUGSS method still considers both the two
sub-objectives over the entire sampling procedure albeit with different weights. The
proposed sampling method achieved the lowest proportion of high uncertainty area
in the end.

Figure 7(b) shows the evolution of the mean of overall prediction uncertainty in the
study area calculated by three different sampling methods. Similarly, it is obvious that the
reduction of uncertainty based on the two uncertainty-guided sampling methods was

Figure 7. The change of the proportion of area with high uncertainty (a) and the mean of overall
prediction uncertainty (b) with the number of supplemental samples by using three sampling
methods (adaptive uncertainty-guided stepwise sampling (AUGSS), uncertainty-guided stepwise
sampling (UGSS) and stratified simple random sampling (SRS)).
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significantly faster than that based on SRS. It is also worth noting that the prediction uncer-
tainty generated by AUGSS was lower than that by UGSS for almost all numbers of supple-
mental samples. In the beginning, UGSS only focused on the reduction of the unpredicted
area, while AUGSS simultaneously consider the unpredicted area and the overall prediction
uncertainty, which resulted in a much faster reduction of prediction uncertainty by AUGSS
than that by UGSS. After the middle phase of the sampling procedure, the reduction of
uncertainty by UGSS became faster, because it moved from the ‘NoData’ area reduction
stage to the uncertainty reduction stage. The prediction uncertainty by AGUSS also contin-
ued to decrease with the guide of the adaptively weighted objective function. Finally, the
two uncertainty-guided sampling methods obtained very similar values of the mean pre-
diction uncertainty.

From the comparison of the reduction of the unpredictable area and prediction
uncertainty across three sampling methods, it is clear that the proposed AUGSS method
can effectively achieve the two sub-objectives adaptively, and notably, reduce the uncer-
tainty faster and obtain a lower proportion of the unpredictable than the UGSS method.

4.2.2. Comparison of the validation accuracy
The soil property (SOM) was predicted based on the selected samples generated by
three sampling methods. Figure 8 shows the boxplots of predicted accuracies for the
three sampling methods by using three models (CART, RF and SVR) with different
numbers of samples. For the three models, the average validation accuracies based on

Figure 8. Boxplots of RMSE (a) and CCC (b) for three models (classification and regression tree
(CART), random forest (RF) and support vector regression (SVR)) with different numbers of supple-
mental samples generated by adaptive uncertainty-guided stepwise sampling (AUGSS), uncertainty-
guided stepwise sampling (UGSS) and stratified simple random sampling (SRS) methods. RMSE:
root mean square error; CCC: concordance correlation coefficient.
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the two uncertainty-guided sampling methods were both higher than SRS with each
number of samples. Generally, the RF model was the most accurate in the study area.
When using RF as the predictive model and AGUSS as the sampling method, the aver-
age RMSE was 9.1, 8.7 and 8.6, and the average CCC was 0.51, 0.58 and 0.59 with the
supplemental sample size of 10, 20 and 30, respectively. The RMSE of AUGSS was
1.6%, 3.8% and 3.5% lower than SRS, and 0.3%, 1.6% and 0.9% lower than UGSS with
three sample sizes, respectively. In term of CCC, the improvements of accuracy by
using the AUGSS method were 7.7%, 11.8% and 8.9% compared with SRS, and 1.4%,
6.1% and 3.0% compared with UGSS with three sample sizes, respectively. Statistical
tests were performed to evaluate whether accuracy differences between different
methods are statistically significant under that the assumption of the validation data
are representative of the population. It shows that most results of three models with
different numbers of samples generated by three sampling methods were significantly
different (Table 2). In addition, for all three sampling methods, the variations of the
accuracies were all reduced with the increase of the sample size, but AUGSS obtained
more stable results than SRS and UGSS in most cases. This result indicated that the
AUGSS method can effectively select representative samples and improve the perform-
ance of the predictive model.

5. Discussion

5.1. Impact of parameters for the proposed method

There are two important parameters in the method, one is the parameter p for con-
trolling two weighting parameters (w1 and 1�w1), another is the parameter a for con-
trolling the uncertainty threshold (Ut) (described in Section Adaptive approach for
adjusting parameters). We used RF as the predictive model for testing the prediction
accuracy with different values of parameters. Figure 9 shows the model performance
(RMSE) with 30 supplemental samples under different combinations of the two param-
eters, which are expressed in a 2-dimensional grid. The parameter p was set from 0.2
to 2.0 with an interval of 0.2. The parameter a was set from 1.0 to 5.5 with an interval
of 0.5. It can be noted that the two parameters both had an impact on the prediction
result. Most importantly, a balanced combination of a ‘moderate’ value of the param-
eter could achieve a good result. Extremely large or small values will increase the
RMSE of the prediction. From the figure, the optimal combination of the two parame-
ters was 1.2 for p and 4.0 for a in this case study.

Table 2. Results of Mann-Whitney U test for differences in RMSE and CCC with different sampling
methods, predictive models, and sample sizes. Same letters within rows indicate non-significant
differences at significance level of 0.05.

Supplemental
sample size

RMSE CCC

CART RF SVR CART RF SVR

SRS UGSS AUGSS SRS UGSS AUGSS SRS UGSS AUGSS SRS UGSS AUGSS SRS UGSS AUGSS SRS UGSS AUGSS

10 a b c a b c a b c a b c a b b a b c
20 a b b a b c a b c a b b a b c a b c
30 a b c a b c a b c a b c a b c a b c
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The performance of the prediction impacted by these two parameters in the sam-
pling method probably results from the following reasons. For the parameter p, if p is
too small, the decreasing rate of w1 will be slow. This allows the importance of sub-
objective O1 to remain a high priority during the later phase of the sampling proced-
ure, which is not conducive to reducing uncertainty. If p is too large, the decreasing
speed of w1 will be too fast, which leads to the less importance of O1 in the early
phase. For the parameter a, if it is too small, the reduction speed of the uncertainty
threshold Ut will be slow. Thus, Ut will still be large at the later phase of sampling,
which makes it difficult to effectively select representative samples due to the mis-
match between the threshold value and the overall prediction uncertainty. On the
other side, if a is too large, the uncertainty threshold will be reduced rapidly in the
early phase, which will greatly limit the space for the selection of supplemental sam-
ples. Therefore, there is a moderate range which is appropriate for these two parame-
ters. Though the best combination of parameters obtained in our study area may not
simply be applied to other areas, the result here suggests that the reasonable range
of a and p for soil prediction could be 3.0� 5.0 and 0.6� 1.6, respectively.

5.2. Applicability and implications

The proposed AUGSS method adopted an adaptive approach to select the supplemen-
tal samples based on the prediction uncertainty derived from the environmental simi-
larity calculation. The method not only can select new (supplemental) samples
incorporating the existing samples, but also can provide the order in selecting supple-
mental samples. Compared with the previously developed UGSS method, the pro-
posed AUGSS method reduces the subjectivity in using UGSS and makes the whole

Figure 9. The prediction accuracy (RMSE) of the random forest model based on the samples gen-
erated by the proposed sampling method with the different combination values of parameter a
and parameter p:
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computation process run fully automatically and effectively. The uncertainty-guided
stepwise sampling strategy could provide the order of additional samples based on
their respective contributions to the mapped area coverage and accuracy improve-
ment. The samples ranked in the front are supposed to be representative for the total
area because they can largely reduce the area with high uncertainty. The order of sup-
plemental samples provides us a guidance for the priority of field sampling when the
resources for sampling are limited.

When there are no legacy samples in a study area, the proposed supplemental
sampling method can also be performed. In this case, the entire area can be consid-
ered as an unpredicted area and the point that minimizes the high uncertainty area
can be selected as the first point. However, the initial uncertainty threshold should be
carefully determined by the prior knowledge of the area. In addition, the success of
the sampling design also depends on the selected environmental covariates. Choosing
environmental covariates that are more comprehensive for predicting the target geo-
graphical variable can increase the validity of prediction uncertainty (Zhang et al.
2016). The importance of each covariate for predicting a certain soil property is also
critical for further improving the performance of the sampling method. As it is hard to
know the contributions of different covariates before collecting sufficient samples in
an area, taking advantage of expert knowledge or legacy conventional soil maps in
the target area could be a potential work in the future studies.

6. Conclusions

This paper presented an adaptive uncertainty-guided supplemental sampling method
to generate representative samples for improving geospatial prediction. This method
unifies the two important objectives (reduction of unpredictable area and reduction of
overall prediction uncertainty) into one overall objective function by using weighting
parameters to regulate the importance of each of the sub-objective. Adaptive
approaches for adjusting the weighting parameters and the uncertainty threshold
were devised in such as a way that they are automatically adjusted during the sam-
pling procedure. From the results of a digital soil mapping case study, the proposed
sampling method can simultaneously achieve the dual goal of reducing the high
uncertainty area and reducing the overall prediction uncertainty by selecting the sup-
plemental samples effectively. Compared with the stratified random sampling and
non-adaptive uncertainty-guided sampling method, the proposed AUGSS method
reduced the uncertainty faster and obtained a smaller proportion of the high uncer-
tainty area, which indicated the effectiveness of the adaptive approach for adjusting
the parameters. Three machine learning models were used for predicting the soil
property, the AUGSS method achieved the best validation accuracy with different sam-
ple sizes in most cases. The results also suggested that the samples selected by the
proposed method could achieve more stable prediction performance by using differ-
ent predictive models. It is concluded that the AUGSS method offers a potential for
effectively sampling for geospatial prediction, and the adaptive approach in this
method can greatly reduce the difficulty of using an uncertainty-guided sampling
method based on environmental similarity.
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