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A B S T R A C T   

Sampling design plays a key role in digital soil mapping (DSM). Efficient sampling design for multiple soil 
properties is increasingly needed for multivariate soil survey and mapping. However, most of the present sam
pling methods are not developed for multiple soil properties. Different soil properties have different influential 
covariates, but usually only one set of covariates is used in designing samples for multiple soil properties which 
makes simultaneously mapping multiple soil properties accurately difficult. This paper proposed a multiple soil 
properties oriented representative sampling strategy (MPRS) by considering the influential environmental 
covariates for each soil property. The method first selects the most influential set of environmental covariates for 
each soil property, then uses fuzzy c-means (FCM) clustering to generate environmental clusters relating to 
spatial variation patterns for each soil property, and the selected samples are representative of as many typical 
locations of environmental clusters for multiple soil properties as possible. The proposed sampling method was 
applied for mapping soil sand content and soil organic matter content at surface (0–20 cm) and subsurface 
(20–40 cm) layers in a study area with 5900 km2 located in Anhui Province, China, and compared with two 
methods, the purposive sampling (PS) method and integrative hierarchical stepwise sampling (IHS) method. The 
results showed that the proposed sampling method achieved the most accurate prediction for most of the four soil 
properties over different sample sizes. The proposed sampling method also has an advantage to extract repre
sentative samples which can better cover multiple soil properties with a limit of a small sample size. On average, 
the improvement of prediction accuracy by using the MPRS method was 38.1% and 36.3% compared with PS and 
IHS in terms of R2, 4.8% and 4.6% in terms of RMSE, and 11.7% and 13.7% in terms of CCC, respectively. Our 
case study confirmed the necessity to consider the difference of the influential environmental variable combi
nations for the multiple soil properties oriented sampling design. We conclude that MPRS is a potential effective 
method for supporting DSM for multiple soil properties.   

1. Introduction 

The spatial distribution of soil types/properties is basic data for land 
management and ecological modeling (Band and Moore, 1995; 
McBratney et al., 2003). Digital soil mapping (DSM) has become the 
most common approach to obtain soil maps over the past decades 
(Lagacherie, 2008; Lamichhane et al., 2019; McBratney et al., 2003; Zhu 
et al., 2010; Zhu et al., 2015; Heung et al., 2016; Arrouays et al., 2020; 
Yang et al., 2021a). DSM uses sample data and environmental variables 
(covariates) to predict the spatial distribution of soil types or properties. 
Sampling methods to determine where to collect samples profoundly 

impact the quality of the resulting soil maps (Brus and de Gruijter, 1997; 
de Gruijter et al., 2006; Carter and Gregorich, 2007; Gregoire and Val
entine, 2008; Brus, 2015). However, field sampling is costly and labor- 
intensive (Webster and Oliver, 1990; Zhu et al., 2008; Yang et al., 
2018). Therefore, how to design a set of limited sample points to 
generate accurate soil maps is a key research topic in DSM. 

Numerous studies have been devoted to sampling optimization for 
soil mapping. When only considering the spatial distribution of samples, 
the spatial coverage sampling, such as sampling based on k-means 
clustering in geographical space, has been developed to design an even 
distribution of sample set in geographic space (Brus et al., 2006; Royle 
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and Nychka, 1998; Walvoort et al., 2010). Sampling based on geo
statistics has also been applied in many studies, in which a sample 
design is optimized based on a prior semivariogram of the target soil 
property (Goovaerts, 1999; Hengl et al., 2004). According to Jenny’s 
(1941) theory of soil forming factors for linking the soil development 
with multiple environmental factors, many methods have been devel
oped to use ancillary environmental covariates to optimize the sample 
design in the environmental feature space (Isaaks and Srivastava, 1989; 
Goovaerts, 1999; Minasny and McBratney, 2006; Brus and Heuvelink, 
2007; Ma et al., 2020a). For example, a popular sampling method, the 
conditional Latin hypercube sampling (cLHS), selects samples that fully 
cover the range of each ancillary environmental variable by maximally 
stratifying the marginal distribution of environmental variables (Min
asny and McBratney, 2006). In addition to the way of selecting samples 
by fully covering the feature space, researchers designed samples by 
capturing the typical types of soil variations with assistance of envi
ronmental covariates. Zhu et al. (2008) proposed a purposive sampling 
(PS) approach based on the concept that unique soil conditions (soil 
types or soil properties) can be associated with unique combination 
(configuration) of environmental conditions. This method used fuzzy c- 
means (FCM) clustering to identify those unique combinations and take 
locations on cluster centroids as typical sample points. Furthermore, 
Yang et al. (2013) proposed an integrative hierarchical stepwise sam
pling (IHS) strategy by selecting typical sample points representative of 
large-scale spatial patterns and local patterns of soil variations succes
sively. It was tested to generate soil maps with higher accuracy than the 
stratified random sampling (SRS) or cLHS with limited samples at both 
watershed and regional scales (Yang et al., 2016; Yang et al., 2017). 

In practice, it is often that the purpose of a soil survey is to map 
multiple soil properties. In this case, most of the present sampling 
methods may be not applicable or efficient (Vašát et al., 2010). It is, 
therefore, increasingly significant to design sampling methods opti
mized for multivariate soil mapping. Vašát et al. (2010) developed a 
sampling method for multiple soil variables by minimizing the average 
kriging variance for multiple soil properties simultaneously. In their 
method, a linear model of coregionalization with prior sample data was 
employed to fit a variogram model for adapting the mutual spatial 
dependence of different soil properties. Szatmári et al. (2016) used the 
regression kriging variance to optimize the sampling design for multiple 
soil properties by using an extended spatial simulated annealing (SSA) 
method. Szatmári et al. (2019) further proposed a two-phase sampling 
method based on regression kriging for multivariate soil mapping 
considering the economic efficiency. The above sampling methods 
generally adopted geostatistical models such as ordinary kriging or 
regression kriging. However, it is often difficult to verify the stationary 
assumption for the geostatistical models in many complicated field 

conditions. Besides, the influential environmental covariates for 
different soil properties are not explicitly accounted for in these 
methods. 

Those strategies exploring clusters in environmental feature space to 
relating to combinations of environmental covariates to design samples 
can be a potential effective solution for mapping multiple soil properties. 
The spatial variation type of each soil property can be associated with 
one combination of environmental variables (Qi et al., 2006; Zhu et al., 
2008; 2010). It is effective to sample at locations typical of soil variation 
types. Brus (2019) mentioned in a review that further studies into effi
cient sampling designs based on fuzzy memberships are needed. In the 
aforementioned sampling methods of Zhu et al. (2008) and Yang et al. 
(2013), only one set of environmental variables were employed to 
design samples based on environmental clustering. However, the most 
influential set of environmental variables for mapping different soil 
properties are different (Behrens et al., 2014; Miller et al., 2015; Shi 
et al., 2018), because the environmental variables have various impacts 
on different soil properties under different formation mechanisms 
(Gessler et al., 1995; Xiong et al., 2012; Luo et al., 2017; Ma et al., 2019; 
Xu et al., 2019; Yang et al., 2021b). Considering the different influential 
environmental variables for multiple soil properties can be used to select 
typical samples representative of spatial variations for multiple soil 
properties. 

In this paper, we propose a multiple soil properties oriented repre
sentative sampling strategy (MPRS). This strategy designs one sample 
set that can be simultaneously representative toward different soil 
properties based on an environmental clustering analysis after knowing 
the most influential set of environmental variables to each target soil 
property. The influential environmental variables to each soil property 
was determined using machine learning based on prior sample data in 
this study. The next section presents a detailed introduction to the 
methodology and a case study was conducted in Xuancheng, Anhui 
province, China. The proposed MPRS method was evaluated and 
compared with the purposive sampling (PS) and integrative hierarchical 
stepwise sampling (IHS) for mapping soil sand content and soil organic 
matter content of both the surface layer (0–20 cm) and the subsurface 
layer (20–40 cm). 

2. Materials and methodology 

2.1. Study area and data 

2.1.1. Study area 
The study area is Xuanzhou City, Guangde County, and Langxi 

County in Anhui Province, China (Fig. 1). Its area is about 5900 km2. The 
climate of this area is warm and humid in summer and relatively cool 

Fig. 1. The location, the digital elevation model and field samples points of the study area.  
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and dry in winter. Its annual average temperature ranges from 11 to 
16℃ and the average precipitation is 1200–1800 mm. The elevation 
ranges from 0 to 1039 m with flat plains in the northwest and hills in the 
northeast and south. The main soil types in this area are red soil and 
paddy soil in the Chinese genetic soil classification system (Chinese 
National Soil Survey Office, 1992). Land use is mainly cultivated land 
with rice as the dominant crop, and forest land covered by bamboo, fir, 
shrub, and other evergreen broad-leaved trees. 

The soil sand content of the surface layer at a depth of 0–20 cm 
(SandA) and the subsurface layer at a depth of 20–40 cm (SandB), and 
the soil organic matter content of the surface layer (SOMA) and the 
subsurface layer (SOMB) are the target soil properties. 

2.1.2. Environmental covariate data 
According to the previous studies on the soil-environment relation

ships in this area (An et al., 2018; Yang et al., 2019), we used the 
following environmental covariates, including parent material, vegeta
tion, and topographic variables such as elevation, slope gradient, slope 
aspect, planform curvature, profile curvature, and topographic wetness 
index. The raw form of slope aspect was transformed into a measure of 
northness vs. southness using the cosine function. The transformed 
values are close to 1 if the aspect is generally northward, close to − 1 if 
the aspect is southward, and close to 0 if the aspect is either east or west 

(Roberts, 1986). The information of these covariates are described in 
Table 1. The parent material map was generated from the 1: 500,000 
geological map of China. There are eight parent lithology types in the 
study area (Fig. 2). All topographic variables were derived from the 
digital elevation model (DEM) obtained from the Shuttle Radar Topo
graphic Mission (SRTM) dataset (Farr and Kobrick, 2000). The 
Normalized Difference Vegetation Index (NDVI) was used as the vege
tation index. We averaged the Landsat-5 remote sensing image data with 
cloud cover less than 10% of the three seasons separately (spring: March 
to May, summer: June to August, and autumn: September to November) 
from 2009 to 2011 (cover the sampling time). All covariate maps were 
resampled into the resolution of 90 m which was consistent with the 
resolution of the DEM dataset. 

2.1.3. Sample data 
There were 393 sampling points collected in 2011, 2015 and 2016 

through several investigations in the study area (Fig. 1). Among these 
samples, 57 points collected based on a systematic sampling strategy of a 
10 km by 10 km grid arrangement were used as an independent vali
dation set in this study. The remaining 336 samples included 58 samples 
selected using an integrative hierarchical stepwise sampling (Yang et al., 
2013), 57 samples collected by a heuristic uncertainty directed sampling 
(Zhang et al., 2016), 30 samples collected by environmental similarity- 
based recommendation (Ma et al, 2020b, Zhu et al., 2018), and other 
samples were collected by using stratified random sampling with the 
parent lithology types as strata. 

At each sampling location, soils were sampled at surface (0–20 cm) 
and subsurface (20–40 cm). The soil sand content (Sand) (%) and the soil 
organic matter content (SOM) (g/kg) at these two depths were 
measured. The soil samples were air-dried, sieved through a 2-mm mesh 
sieve, and analyzed using a Mastersizer 2000 laser particle size analyzer 
(Malvern Instruments, England). The dichromate oxidation method 
(external heat applied) was used to measure the SOM concentration (Liu 
et al., 1996; Nelson and Sommers, 1983). 

The 58 samples selected using the integrative hierarchical stepwise 
sampling (Yang et al., 2013) were taken as the IHS samples in this study 
directly. The proposed sampling method and PS method selected their 
samples from the 336 samples, on account of those samples were 
generally uniformly distributed over the geographic space (Fig. 1) and 
represented the distribution of the environmental variables well 
(Fig. S1). 

2.2. The multiple soil properties oriented representative sampling design 
method 

The basic idea of the proposed MPRS method is to first select the 
most influential sets of environmental features for each soil property, 
and generate environmental clusters relating to spatial variation pat
terns for each soil property, then determine the sample locations 
representative of as many typical locations of environmental clusters for 
soil properties as possible. The procedure of the method consists of three 
steps: 1) to select the set of influential environmental variables for each 
soil property; 2) to generate the environmental clusters for representing 
the spatial variation of each soil property and determine the typical 
locations of each environmental clusters; 3) to select samples for mul
tiple soil properties based on the typical locations for each soil property. 
Fig. 3 shows the overall framework of the sampling method. 

2.2.1. Selecting influential environmental variables for each soil property 
There are three commonly-used approaches to select the influential 

environmental variables for a soil property. The first is based on the 
expert knowledge of local soil pedogenesis. This approach relies on the 
experience of local experts. Another approach to select variables is based 
on literature review, or namely meta-analysis techniques. The third way 
to select the influential variables using machine learning techniques 
based on sample data. Studies showed that variables selected using 

Table 1 
Description of the environmental variables used in the study area.  

Variable 
type 

Variable name Abbreviation Reference or data source 

Topography Elevation ELEV Shuttle Radar Topography 
Mission (SRTM) 

Slope (cosine) SLP Zevenbergen and Thorne 
(1987) 

Aspect ASP Zevenbergen and Thorne 
(1987) 

Profile curvature PROFC Zevenbergen and Thorne 
(1987) 

Plan curvature PLANC Zevenbergen and Thorne 
(1987) 

Relief degree REF Park and van de Giesen 
(2004) 

Terrain ruggedness 
index 

TRI Riley et al. (1999) 

Total curvature TC Wilson and Gallant (2000) 
Topographic 
position index 

TPI Qin et al. (2009) 

Terrain 
characterization 
index 

TCI Park and van de Giesen 
(2004) 

Surface curvature CS Park and van de Giesen 
(2004) 

Specific catchment 
area 

SCA Beven and Kirkby, (1979) 

Topographic 
wetness index 

TWI Quinn et al. (1991); Qin 
et al. (2011) 

Stream power index SPI Moore et al. (1993) 
Climate Annual mean 

temperature 
TEMP National meteorological 

dataset of China 
(http://www.resdc.cn) 

Annual precipitation PRECI National meteorological 
dataset of China 
(http://www.resdc.cn) 

Vegetation NDVI in the spring 
(the average from 
2009 to 2011) 

NDVI-1 http://earthexplorer.usgs. 
gov 

NDVI in the summer 
(the average from 
2009 to 2011) 

NDVI-2 http://earthexplorer.usgs. 
gov 

NDVI in the autumn  
(the average from 

2009 to 2011) 

NDVI-3 http://earthexplorer.usgs. 
gov 

Parent 
materials 

Lithology type PM Chinese ecological 
environmental database 
(1:500,000)  
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machine learning outperformed those selected based on expert knowl
edge in soil mapping (Brungard et al., 2015; Shi et al., 2018). In this 
study, we selected the influential variables based on the calculated 
variable importance using a random forest (RF) model (Breiman, 2001). 

Random forest is an ensemble model that applies bootstrap sampling 
to obtain the data subsets for training the base learners, and uses the 
voting or averaging strategy for aggregating the base learners. RF has 
been widely adopted to calculate the variable importance in predicting 

Fig. 2. The map of parent lithology types in the study area.  

Fig. 3. The framework of the multiple soil properties oriented representative sampling method, FCM: fuzzy c-means.  
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soil properties or classes (e.g. Brungard et al., 2015; Hengl et al., 2017; 
Yang et al., 2020; He et al., 2020). In the RF model, bootstrap sampling is 
used to obtain the data subsets for training each base learner, and the 
rest of data are used as the out-of-bag (OOB) data for validation. RF 
provides two measures of variable importance: mean decrease in accu
racy (MDA) and mean decrease in Gini (MDG). MDA is usually consid
ered to be a more reliable measure than MDG (Bureau et al., 2003). In 
this study, we adopted the MDA as the variable importance index. The 
mean decrease in accuracy is assessed by replacing each environmental 
variable in turn with random noise and observing the average decrease 
in the prediction accuracies for all trees based on the out of bag (OOB) 
validation. The larger value of the mean decrease accuracy, the stronger 
the capability of interpreting the predicted soil property. This approach 
has been shown to be effective for variable reduction and improving 
model accuracy (Svetnik et al., 2003; Xiong et al., 2012; Heung et al., 
2014). This means that the selection of influential environmental vari
ables for different soil property is necessary. The specific procedure to 
select influential variables for each soil property based on MDA is as 
follows:  

(1) All the environmental variables are adopted as the candidate 
variables to fit the initial RF model.  

(2) Rank all the candidate variables by their variable importance 
calculated by the mean decrease in accuracy.  

(3) Remove the environmental variables with the importance value 
less than a threshold. This threshold was set as zero in our case 
study. 

For each soil property, the above procedure was performed based on 
all the samples. The representation of the environmental feature space 
ensured a good chance of determining the influential environmental 
variables for each soil property. The ‘randomForest’ package (Liaw and 
Wiener, 2002) in R (R Development Core Team, 2012) was used to 
calculate the variable importance. 

2.2.2. Determining the typical locations for representing the spatial 
variation of each soil property 

Each type of soil property variation can be associated with one 
combination of environmental variables (Qi et al., 2006; Zhu et al., 
2008; 2010). In this study, fuzzy c-means clustering (FCM) (Bezdek, 
1981) was performed on the selected environmental covariates for each 
soil property to generate clusters in the environmental feature space. 
These environmental clusters were assumed to be related to the soil 
variation types. The FCM clustering algorithm is an unsupervised 
learning method, developed by Dunn (1973) and improved by Bezdek 
(1981). It can optimally partition a dataset, such as the selected envi
ronmental covariates data, into a given number of classes. It has been 
successfully used in soil classification and terrain analysis (de Bruin and 
Stein, 1998; Burrough, et al., 2000; English, 2001; Hanesch et al., 2001; 
McBratney et al., 1992; Yang et al., 2013; Zhu et al., 2008). 

Compared to the well-known k-means clustering algorithm (Mac
Queen, 1967), FCM is a “soft” clustering algorithm that can compute the 
membership of each data element associated with each class (Bezdek, 
1981). Thus the generated fuzzy memberships to each class can better 
recognize the spatial continuous distribution of geographical variables 
(such as soils). Let the environmental covariates dataset be a finite 
collection of n data vectors X = {x1, x2,⋯, xn}, and a list of c cluster 
centroid vectors V = {v1, v2,⋯, vc}, the fuzzy clustering criterion which 
recognizes clusters can be based on distances from data points to cluster 
centroids. 

The objective function in FCM is the total weighted sum of squared 
distances between each point and each class centroid, which is quanti
fied as: 

Jm(X,V) =
∑n

k=1

∑c

i=1
(uik)

m
(Dik)

2 (1) 

where Jm is the fuzzy partition error, it decreases as all data points 
tend to be overall closer to their cluster centroids. Dik is the Euclidean 
distance between the feature vector of the kth data point xk and the 
vector of the ith cluster centroid vi. m is the parameter which defines the 
fuzziness of the resulting clusters. The larger value of m determines the 
higher level of cluster fuzziness. In this study, we set m as 2 as default. uik 

is the membership of the kth point belonging to the ith cluster, it is 
defined as Eq. (2): 

uik =

[
∑c

j

(Dik)
2

(
Djk

)2

]− 2
m− 1

(2) 

The centroids of the clusters are defined as follow: 

centroidi =

∑n
k=1uik

mxk
∑n

k=1uik
m (3) 

It is often difficult to determine the optimal number of clustering. In 
this study, we used normalized entropy (H) (Bezdek et al., 1984) in our 
study to determine the optimal number of clusters. When the number of 
clusters is c, H is determined as follow: 

Hc = −
∑n

k=1

∑c

i=1
[uikloga(uik) ]

/

n (4) 

Hc is a scalar measure of the level of fuzziness in a given fuzzy 
partition (Bezdek et al., 1984). Generally, H increases with the numbers 
of clusters increased. We can examine the improvement of the entropy 
value over two adjacent numbers of cluster results to determine the 
optimal number of clusters (English, 2001; Yang et al., 2013). When the 
increment of H with cluster number changing from c’ − 1 to c (i.e., 
Hc’ − Hc’ − 1) is smaller than the increment with cluster number changing 
from c’ to c’ +1 (i.e., Hc’+1 − Hc’ ), the current cluster number can be 
considered as a satisfying partition of the dataset and c’ is the possible 
optimal cluster number. 

The clustering results include cluster centroids and fuzzy member
ship maps of all environmental clusters. The cluster centroids are 
described by the values of their environmental feature vectors. The fuzzy 
membership map for a given environmental cluster contains the mem
bership at each pixel to that cluster. 

To identify the typical locations of environmental clusters that could 
indicate typical soil variation, the values of a fuzzy membership maps 
were reclassified and transformed into a binary map that only includes 
0 and 1 by applying a membership threshold. A pixel with the value of 1 
in the binary map indicates that it is a typical location of a certain 
environmental cluster, and a pixel with the value of 0 indicates that it is 
not typical of that environmental cluster. A higher threshold may lead to 
a narrower selection of typical samples. We set the threshold to 0.7, 
according to a previous study of An et al. (2018) in this area. 

In this step, we generated all the binary maps of environmental 
clusters for each soil property. Those pixels with a value of 1 in those 
binary maps indicated the typical locations of environmental clusters for 
each soil property. 

If categorical variables (such as parent materials) are included in the 
environmental database, these variables will be used to divide the whole 
study area into strata. In this study, parent materials were taken as 
strata. FCM clustering was applied in each stratum, and samples were 
designed for each stratum according to the next step. 

2.2.3. Selecting representative samples for multiple soil properties 
For multiple soil properties, all the hardened binary maps were 

overlaid to produce an overall frequency map of typical locations in each 
stratum. For example, if there are four target soil properties, a location 
with a value of three in the frequency map means that three soil prop
erties can be represented at this location. The higher frequency at a 
location, the more representative there for multiple soil properties, and 
the higher priority to sampling at this location. 
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Fig. 4. An example diagram for illustrating the record of soil property and environmental cluster chains. Each chain contains three parts: the chain name (expressed 
by connecting multiple combinations of soil property and cluster), locations of all pixels that belong to the chain, and the corresponding fuzzy membership values, uik 
is the membership of the jth point belonging to the ith cluster. 

Table 2 
The differences in the use of the purposive sampling (PS), integrative hierarchical stepwise sampling (IHS), and multiple soil properties oriented sampling (MPRS) 
methods in this study.   

PS IHS MPRS 

Selection of 
environmental 
variables 

The union of the selected environmental 
variables for each soil property in MPRS. 

The union of the selected environmental 
variables for each soil property in MPRS. 

Selecting the most influential set of variables for each soil 
property using a machine learning approach. 

Determination of 
Environmental 
Clusters 

Environmental clusters were generated 
under an optimal cluster number for all 
the soil properties. 

Multiple groups of environmental clusters 
were generated under different numbers of 
clusters. 

The optimal number of clusters for each soil property was 
determined, and environmental clusters were generated for 
each soil property. 

Selection of the 
representative 
samples 

Samples were selected at the cluster 
centroids. 

Samples were selected based on the ranked 
“environmental cluster chain” derived from 
multiple clustering maps. 

Samples were selected based on the ranked “chain of soil 
properties with their environmental cluster” derived from 
multiple clustering maps for each soil property.  

Table 3 
Sample sizes of four groups on each parent material (MP) and the total number of samples for each group.  

Group Sample size 
PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 Sum 

G1 3 2 4 5 2 8 5 3 32 
G2 5 7 6 5 5 8 5 5 46 
G3 6 7 7 6 6 10 10 6 58 
G4 12 10 11 8 11 11 11 12 86  

Fig. 5. The sorted importance of the selected environmental covariates based on mean decrease in accuracy for four different soil properties. SandA and SandB are 
the soil sand content of the surface layer (0–20 cm) and the subsurface layer (20–40 cm), respectively, and SOMA and SOMB are the soil organic matter content of the 
surface layer and the subsurface layer, respectively. The topographical variables are in orange, the climate variables are in blue, the vegetation variables are in green 
and the parent material is in brown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The locations with the same frequency may represent different 
typical positions of different environmental clusters for multiple soil 
properties. To examine the class configurations for different soil prop
erties under each frequency, the concept of the “chain of soil properties 
with their environmental clusters” is introduced to record the specific 
list of clusters and the associated soil properties. This concept, addi
tionally takes into account of different soil properties, is an extension of 
the “environmental cluster chain” proposed by Yang et al. (2013). For 

example, if one location with a frequency of 3 is represented by a chain: 
“P1C1-P2C5-P4C2”, this means that this location can be identified as a 
typical position of “P1C1” (i.e., the 1st environmental cluster of the 1st 
soil property), the 5th environmental cluster (C5) for the 2nd soil 
property (P2), and the 2nd environmental cluster for the 4th soil prop
erty. Each location is thus labeled with a chain name except for those 
locations with the frequency of zero. Selecting samples on those loca
tions with high frequencies means that it is able to capture several 

Fig. 6. The fuzzy membership maps of environmental clusters (left) and their reclassified binary maps (right) for the surface soil organic matter content on one 
stratum (the 6th parent material). 
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typical locations for multiple soil properties once a time. As an example 
illustrated in Fig. 4, for each chain, it contains information about all the 
point locations and fuzzy membership values at those locations. 

All chains need to be ranked for designing samples because they 
represent different numbers of soil properties and have different pixel 
numbers (areas). We thus ranked these chains based on two criteria 
successively: 1) the number of soil properties represented in a chain; 2) 
the area (the number of pixels) of each chain. All chains were ranked by 
these two criteria in order from largest to smallest. Note, if a chain with a 
lower ranking order was completely contained in a chain with a higher 
ranking order, this lower ranked chain will be discarded. This is because 
that the higher ranked chains have already covered those typical loca
tions of environmental clusters for soil properties represented by the 
lower ranked chains. Then, with the same number of occurred soil 
properties, the chains were ranked by their areas. The chain with the 
area of coverage smaller than a pre-defined threshold was considered 

atypical for soil mapping and excluded from the sampling (Yang et al., 
2013). After the ordering and removing of the redundant or small 
chains, all the remaining chains were unique patterns. 

Finally, we successively selected the sample locations based on the 
ranked chains. For every pixel in a chain, we calculated its mean fuzzy 
membership value to all the clusters in the chain. Take a location labeled 
with the chain “P1C1-P2C5-P4C2” as an example, assuming that the 
fuzzy membership values to the three clusters are 0.9 (C1 to P1), 0.85 
(C5 to P2) and 0.95 (C2 to P4) at this location, the mean membership 
value of this chain at this location is 0.9. The samples were selected at 
those locations with the highest mean membership value in each chains. 
Due to the order of the chains, the selected samples had correspondingly 
representativeness. 

2.3. Two sampling methods for comparison 

To evaluate the proposed sampling method, we adopted the other 
two sampling methods, PS (Zhu et al., 2008) and IHS (Yang et al., 2013, 
2016), for mapping multiple soil properties. The reasons of choosing 
these two methods for comparison are that they both use FCM to 
generate fuzzy membership maps of clusters for sample design. 
Furthermore, IHS has been validated to be able to collect less sampling 
points with a higher mapping accuracy than stratified random sampling 
or cLHS in two case studies (Yang et al., 2016). 

The PS method used FCM to generate environmental clusters based 
on all the available environmental variables (Zhu et al., 2008). Strati
fication of the study area was first implemented by using soil parent 
materials, and the clustering is performed in each stratum. Only one 
optimal cluster number was determined for each stratum. The samples 
generated by PS method were selected from the 336 collected samples. 
Particularly, the sample point with the highest fuzzy membership to a 
cluster was determined as the sample point for the environmental 
cluster. A total of 86 environmental clusters were generated after clus
tering for all the strata, thus, 86 points were selected as PS samples. 

IHS also used FCM to generate clusters based on all the available 
environmental variables together (Yang et al., 2016). Stratification by 
the parent materials was implemented first, and the FCM clustering was 
performed in each stratum. For each stratum, a range of cluster numbers 
was determined to generate multiple groups of environmental clusters, 
which is used to approximate soil spatial variations at different scales. A 
few clusters are assumed to represent the major soil variations types, and 
increasing the number of clusters leads to the emergence of minor types. 
In other words, the dominant large-scale soil variation types can always 
be detected regardless of the number of clusters, but small-scale local 
types are only revealed when the number of clusters is greater (Yang 
et al., 2017). Based on this, all the environmental clusters were reclas
sified to binary maps to discriminate their typical locations. The binary 
maps under a series of cluster numbers were overlaid to generate the so- 
called “environmental cluster chain”, recording the specific list of clas
ses and the associated clustering number for each pixel. The more classes 
occurred in a chain, the larger spatial variation type the chain repre
sented. Samples were selected based on the environmental cluster chains 
after ranking by the occurrence number of environmental clusters in 
environmental cluster chains and the areas of environmental cluster 
chains. In this study, we adopted the 58 samples selected by using IHS in 
the same study area which is detailed described in Yang et al. (2016). 
These samples represented a total of 58 environmental cluster chains in 
the area, and the sample sets were with three representativeness grades. 
The representativeness grade was determined by the occurrence number 
of environmental clusters in the environmental cluster chains where the 
samples designed. The detail of samples generated by IHS can refer to 
Yang et al. (2016; 2017). 

Differences in the use of these three sampling methods in this study 
were illustrated in Table 2. 

Table 4 
The ranked “chain of soil properties with their environmental clusters” list on 
one stratum (6th parent material as an example), the top 24 chains were listed. 
The chains in italic were discarded and the chains in bold were remained for 
sample design. Note that all the chains represented four soil properties in this 
stratum, but chains represented different numbers of soil properties in other 
strata.  

Chain name Number of soil 
properties in the chain 

Area of the chain 
(number of pixels) 

SandAClass2-SOMAClass3- 
SandBClass2-SOMBClass2 

4 51,783 

SandAClass4-SOMAClass3- 
SandBClass2-SOMBClass2 

4 37,950 

SandAClass3-SOMAClass4- 
SandBClass6-SOMBClass3 

4 25,591 

SandAClass6-SOMAClass1- 
SandBClass5-SOMBClass3 

4 19,408 

SandAClass5-SOMAClass1- 
SandBClass5-SOMBClass3 

4 17,911 

SandAClass8-SOMAClass4- 
SandBClass6-SOMBClass3 

4 14,467 

SandAClass1-SOMAClass4- 
SandBClass6-SOMBClass3 

4 13,237 

SandAClass7-SOMAClass4- 
SandBClass6-SOMBClass3 

4 11,837 

SandAClass5-SOMAClass4- 
SandBClass6-SOMBClass3 

4 11,696 

SandAClass3-SOMAClass2- 
SandBClass1-SOMBClass4 

4 11,478 

SandAClass6-SOMAClass4- 
SandBClass6-SOMBClass3 

4 11,145 

SandAClass6-SOMAClass1- 
SandBClass4-SOMBClass3 

4 10,697 

SandAClass3-SOMAClass2- 
SandBClass6-SOMBClass4 

4 10,422 

SandAClass7-SOMAClass2- 
SandBClass6-SOMBClass4 

4 9702 

SandAClass5-SOMAClass1- 
SandBClass4-SOMBClass3 

4 9469 

SandAClass3-SOMAClass4- 
SandBClass4-SOMBClass3 

4 7844 

SandAClass3-SOMAClass4- 
SandBClass6-SOMBClass1 

4 5921 

SandAClass1-SOMAClass4- 
SandBClass4-SOMBClass3 

4 5074 

SandAClass8-SOMAClass4- 
SandBClass4-SOMBClass3 

4 5037 

SandAClass3-SOMAClass2- 
SandBClass6-SOMBClass1 

4 4375 

SandAClass5-SOMAClass1- 
SandBClass4-SOMBClass1 

4 4222 

SandAClass1-SOMAClass1- 
SandBClass5-SOMBClass3 

4 4149 

SandAClass7-SOMAClass4- 
SandBClass4-SOMBClass3 

4 3917 

SandAClass5-SOMAClass1- 
SandBClass3-SOMBClass1 

4 3753  
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2.4. The groups of samples for the three sampling methods based on 
representativeness 

In order to evaluate the representativeness of samples and compare 
the performance of the proposed method with the other two sampling 
methods under different sample sizes, all samples generated by three 
sampling methods were selected into four groups. The sample sizes of 
each group were determined as follows. First, according to the 58 
samples collected using IHS by Yang et al. (2016), the first group was 32 
samples with the highest representativeness grade. The second group 
was samples with the highest and second representativeness grades, 
with a sample size of 46. The third group with a sample size of 58 was 
samples with the highest, second and third representativeness grades. 
These three sample sizes and the sample size selected in each stratum 
were taken as the number of samples of first three groups for the other 

two sampling methods (Table 3). 
Because there are 86 PS samples in the study area, 86 was taken as 

the sample size of the fourth group for PS and MPRS. To determine the 
PS samples in the first three groups, the selected samples in each stratum 
were sorted by the area (number of pixels) of the corresponding clusters 
from highest to lowest. The sample size for each stratum for the first, 
second, and third groups were determined as shown in Table 3. The 
samples with the corresponding numbers were selected according to 
their orders in each stratum to obtain the samples of the first, second and 
third group, successively. 

To be consistent with IHS and PS, four groups of samples were 
selected using MPRS. The FCM clustering was performed with different 
influential environmental covariates for each soil property in each 
stratum. From the existing 336 samples, the sample point with the 
highest fuzzy membership to a “chain of soil properties with their 

Table 5 
Descriptive statistics of the selected samples by three sampling methods (purposive sampling (PS), integrative hierarchical stepwise sampling (IHS) and multiple soil 
properties oriented representative sampling (MPRS)) with four sample sizes. SandA and SandB are the soil sand content of the surface layer (0–20 cm) and the 
subsurface layer (20–40 cm), respectively, and SOMA and SOMB are the soil organic matter content of the surface layer and the subsurface layer, respectively.  

Sample size Method SandA SandB SOMA SOMB 
Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max 

32 PS  29.0  18.9  16.4  56.8  29.2  21.6  11.3  69.0  21.4  12.2  8.8  43.7  10.0  5.5  4.8  43.8  
IHS  30.1  15.9  11.9  65.1  30.1  20.6  11.0  71.3  20.0  10.3  8.8  67.0  9.0  6.4  3.7  46.2  
MPRS  28.8  16.6  11.5  69.2  28.0  19.1  12.8  74.1  20.8  13.5  6.1  69.5  9.8  6.3  3.7  46.2 

46 PS  31.2  19.2  10.5  65.1  31.6  24.5  11.3  74.1  22.4  11.5  8.8  67.0  11.0  5.9  4.3  47.8  
IHS  29.3  16.5  7.9  72.4  32.2  21.9  11.0  76.0  19.2  9.5  8.3  71.0  9.2  4.8  3.7  47.8  
MPRS  26.8  18.4  7.9  73.0  29.6  18.6  7.3  78.2  21.1  11.3  8.3  71.0  10.3  4.6  3.5  52.8 

58 PS  28.2  18.3  5.4  79.5  32.1  23.7  6.3  76.0  22.0  11.0  8.3  68.7  10.7  4.0  4.3  47.8  
IHS  28.7  15.7  7.9  78.5  27.7  20.8  7.8  78.2  19.0  8.9  8.3  71.0  9.0  4.6  3.5  49.2  
MPRS  27.0  17.0  6.5  79.8  27.0  18.3  7.3  78.2  22.3  11.5  6.1  71.0  10.3  3.8  3.5  52.8 

86 PS  27.7  16.5  5.4  78.5  26.3  19.3  6.3  78.2  23.5  10.1  5.6  73.7  11.3  3.5  3.5  52.8  
MPRS  26.5  15.3  5.4  79.8  25.3  21.7  6.3  79.8  24.1  9.6  5.6  73.7  10.9  3.6  3.5  52.8  

Fig. 7. The boxplots of RMSE (a), R2 (b) and CCC (c) for the purposive sampling (PS), integrative hierarchical stepwise sampling (IHS) and multiple soil properties 
oriented representative sampling (MPRS) methods with different sample sizes. SandA and SandB are the soil sand content of the surface layer (0–20 cm) and the 
subsurface layer (20–40 cm), respectively, and SOMA and SOMB are the soil organic matter content of the surface layer and the subsurface layer, respectively. RMSE: 
root mean square error; R2: coefficient of determination; CCC: concordance correlation coefficient. 
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environmental clusters” was determined as the sample point for this 
chain. In each stratum, according to the ranking order of the “chain of 
soil properties with their environmental clusters”, samples were ranked. 
The sample size in each stratum was the same as the above two methods 
for the four sample groups. The samples with the corresponding 
numbers were selected according to their orders in each stratum to 
obtain the samples of the first, second, third and fourth group, succes
sively. Note that only the fourth sample group of PS and MPRS were 
compared due to there were only 58 samples of IHS method (Yang et al., 
2016). 

2.5. Soil mapping and validation 

Soil maps based on different groups of samples designed by the three 
sampling methods were generated and validated to examine how the 
mapping accuracy differs over the three methods. Random forest was 
used as the soil prediction model. RF is a popular ensemble machine 

learning model, and has been widely used in DSM (Heung et al., 2014; 
Hengl et al., 2017; Zhang et al., 2021). The major advantage of RF is the 
incorporation of randomized feature selection and sample selection in 
the multiple trees building process (Breiman, 2001). Thus it can effec
tively reduce the risk of overfitting and lead to a good generalization 
ability. Two important user-defined parameters need to be set in RF. The 
first is the number of covariates that randomly selected for each tree 
building process. We used the rounded down square root of the total 
number of covariates as this parameter value by default (Breiman, 
2001). The second parameter is the number of trees to be learned in the 
forest. We set it to be 200. 

The predicted soil property maps were evaluated based on the 57 
independent validation points in Fig. 1. Three indices were used for the 
validation: root mean square error (RMSE), coefficient of determination 
(R2) and Lin’s concordance correlation coefficient (CCC; Lin, 1989), 
which were calculated as follows: 

Fig. 8. The predicted maps of the four soil properties (the soil sand content at surface layer (SandA) and subsurface layer (SandB), and the soil organic matter content 
at surface layer (SOMA) and subsurface layer (SOMB)) with 32 samples generated by the purposive sampling (PS), integrative hierarchical stepwise sampling (IHS) 
and multiple soil properties oriented representative sampling (MPRS) method. 
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where Zi and Pi are observed and predicted values respectively; Z and 
P are the averages of n observed and predicted values; σz and σp are the 
corresponding standard deviations; and r is the correlation coefficient 
value between the predicted and observed values. A smaller value of 
RMSE or a larger value of R2 and CCC means a higher prediction ac
curacy. We repeated the training of the RF model 100 times using 
different random seeds under each set of training samples. The average 

accuracy over repeated experiments was used for evaluate the model 
performance. 

3. Results 

3.1. The selected environmental covariates for each soil property 

The sorted importance of the selected environmental covariates for 
each soil property is shown in Fig. 5. Variables with the importance 
value smaller than zero were removed since the predictive model could 
not be further improved when adding those variables. It can be seen that 
the selected sets of important covariates for each soil property were 
different. Parent materials, temperature and topography impacted the 
sand content at both layers, while topography, vegetation impacted 
SOM at surface soil and topography mainly impacted SOM at the sub
surface soil. The number of influential variables for Sand was generally 
larger than that for SOM. In addition, the influence of vegetation 

Fig. 9. The predicted maps of the four soil properties (the soil sand content at surface layer (SandA) and subsurface layer (SandB), and the soil organic matter content 
at surface layer (SOMA) and subsurface layer (SOMB)) with 58 samples generated by the purposive sampling (PS), integrative hierarchical stepwise sampling (IHS) 
and multiple soil properties oriented representative sampling (MPRS) method. 
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variables on the two surface soil properties was relatively larger than 
that at the subsurface layer which was more influenced by topographical 
variables. 

3.2. The selected samples by the MPRS method 

With MPRS method, we first clustered the selected environmental 
covariates for each soil property on each stratum (parent material). 
Fig. 6 shows the clustering results of fuzzy membership maps and 
reclassified binary maps for SOMA (soil organic matter content at sur
face layer) on the largest stratum (No. 6 parent material as shown in 
Fig. 2) in the study area. All binary maps for four soil properties were 
overlaid, and the list of “chain of soil properties with their environ
mental clusters” was generated. The chains for this stratum are listed in 
Table 4. Following the ranking criteria described in 2.2.3, these chains 
were ranked. The chain names in bold were selected and the chain 
names in italic were removed because these chains were completely 
contained in the chains with the higher ranking order. According to the 
sample sizes designed in section 2.4, four groups of samples were suc
cessively selected from the ranked chains. The descriptive statistics of 
four groups of samples generated by MPRS and other two sampling 
methods (PS and IHS) was shown in Table 5. 

3.3. Comparison of the soil prediction accuracy and maps for the three 
sampling methods 

3.3.1. The prediction accuracy 
The boxplots of RMSE, R2 and CCC of predicting multiple soil 

properties with different sample sizes are illustrated in Fig. 7. It showed 
that the samples generated by the MPRS method achieved the best 
prediction accuracy in most cases, and IHS generally performed better 
than PS. Averaging the validation indices of the four target soil prop
erties based on the four sizes of samples, the improvements of accuracy 
by using the MPRS method were 38.1% and 36.3% in terms of R2 

compared with PS and IHS, respectively, 11.7% and 13.7% in terms of 
CCC, and 4.8% % and 4.6% in terms of RMSE. It also showed that the 
variation of prediction accuracy over repeated experiments for MPRS 
was smaller than those for other two sampling methods generally, which 
indicated that samples generated by MPRS was more representative and 
had a more stable prediction performance. Particularly, MPRS obtained 
the highest accuracy at every sample size for every subsurface soil 
property. For the first sample group with the smallest sample size of 32, 
the RMSE (or R2 and CCC) by using the MPRS method were all lower 
(higher) than those using the other two sampling methods. This in
dicates that the proposed sampling method can effectively generate a set 
of highly representative samples for multiple soil properties with a small 
sample size. At the sample size of 46 and 58, although some results of the 
MPRS method were not performed best in predicting the surface soil 
properties, the differences between MPRS and other two methods were 
very small. For predicting the two subsurface soil properties, it showed 
that the prediction accuracies of MPRS were largely higher than the 
other two methods. It was also worth noting that the accuracies of 
subsurface soil properties were higher than those at surface in most cases 
from our results, although the selected environmental covariates (such 
as topographic variables and vegetation index) were supposed to be 
more representative of surface conditions than of deeper soil layers. The 
possible reason for the difference between the accuracies of surface and 
subsurface soil properties is that surface soil is more interfered by 
human activities and those variables selected for the subsurface soil 
properties well described their spatial variations. At the sample size of 
86, MPRS also achieved the best results in all four soil properties pre
diction. In general, over the different sample sizes, the MPRS method 
can guarantee that most of the soil properties can achieve the most ac
curate prediction result, while the other two sampling methods cannot. 

The prediction accuracies improved with the increment of sample 

size in general. However, the trends in accuracies changing with the 
increase of the sample size were different for surface and subsurface soil 
properties. The rates of accuracy changing for the surface layer were 
relatively fast, but the rates of the accuracy changing for the subsurface 
fluctuated with the increase of the sample size. One possible reason is 
that the surface soil is more disturbed by human activity than that at 
subsurface layer, and capturing the variation of top soils may be more 
dependent on the sufficient number of samples. 

3.3.2. The predicted soil property maps 
The predicted soil property maps based on the 32 and 58 samples 

generated by three sampling methods are shown in Fig. 8 and Fig. 9 as 
examples, respectively. It can be seen that the predicted maps with three 
sampling methods show a generally similar spatial distribution pattern 
for each soil property, and more similar with a larger number of 58 
samples. The soil property maps generated with the MPRS method 
showed more details of soil spatial variation in most cases. It also can be 
seen that the ranges of soil properties predicted by MPRS samples are 
usually larger than those predicted by the other two sampling methods. 
For example, the range of the predicted SandA and SOMA based on the 
32 MPRS samples was 11 ~ 69% and 6 ~ 69 g/kg, respectively, while 
those based on PS samples were 16 ~ 56%, and 8 ~ 43 g/kg, respec
tively. This indicates that MPRS selected samples representing more 
local minimum or maximum for multiple soil properties with the same 
sample size. 

4. Discussion 

To use their influential environmental variables for each soil prop
erty for soil mapping is increasingly adopted in DSM (Brungard et al., 
2015; Yang et al., 2020; He et al., 2021). However, sampling design 
considering the influential environmental variables for each soil prop
erty has not been paid much attention. The results of our study showed a 
better soil prediction performance of the MPRS method compared with 
other two sampling methods (PS and IHS) in the study area. One main 
difference among the three methods is that PS and IHS use all the 
available environmental variables together for clustering, while MPRS 
uses the influential environmental variables for each soil property. This 
reveals the importance of using the influential environmental covariates 
for each target soil property in sample design. IHS generally generated 
higher mapping accuracies than PS. This is probably because IHS dis
cerned spatial variation types of soil properties at different scales. In the 
same study area, IHS was compared with SRS and cLHS with different 
sample sizes and generated more accurate soil property or soil type maps 
(Yang et al., 2016). Based on the results of our study, MPRS is supposed 
to be more accurate than SRS or cLHS for mapping multiple soil prop
erties. More studies on comparisons between MPRS can be conducted in 
the future. 

The influential environmental variables for different soil properties 
were different. Various environmental variables of climate, topography 
and vegetation had impact on soil sand content, while topography and 
vegetation variables were the most influential for SOM in our study. The 
number of influential variables for Sand was larger than that for SOM. 
Similar findings were also found in previous studies (Heung et al., 2014; 
Wang et al., 2020). In the study of Hengl et al. (2017), they found cli
matic variables (especially precipitation) and surface reflectance 
seemed to be the most important for predicting soil chemical properties, 
while the combination of topography, vegetation dynamics, and parent 
material was more important for predicting soil physical properties. 
However, different from their findings, climate variables did not appear 
to be of high importance for predicting SOM in our study. This is 
probably because our study area is much smaller than their global soil 
mapping research. In addition, the influence of vegetation variables on 
these two surface soil properties was relatively larger than those at the 
subsurface layer which were more influenced by topographical vari
ables. This was consistent with the study of Hong et al. (2020). 

L. Zhang et al.                                                                                                                                                                                                                                   



Geoderma 406 (2022) 115531

13

To determine the influential environmental variables for each soil 
property is needed when applying our method. In this study, we used 
machine learning to select the influential environmental variables based 
on sample data. The selected influential variables for each soil property 
by using RF and prior samples can be transferred in other study area 
with near distance or similar environmental conditions. For example, we 
found that the influence of vegetation variables on the surface soil 
properties was larger than that at the deeper layer, which can be a useful 
prior knowledge for guiding the sampling strategy in other nearby areas 
or regions with similar altitude, land cover and climatic conditions. 

Similar to the previous studies on the sampling method for multiple 
soil properties (Vašát et al., 2010; Szatmári et al., 2016; 2019), prior 
sample data is also needed when using the proposed MPRS method. 
However, there are also some other options to avoid this requirement. 
One is to take advantage of expert knowledge in a study area. The 
knowledge between soil and environmental covariates can be acquired if 
soil experts or expert knowledge are available in the target area (e.g. 
Zhu, 1999). Although it has been found that the mapping accuracy by 
using knowledge-based environmental variables may not higher than 
that by using variables selected by machine learning approaches (Shi 
et al., 2018), it is still an effective way that can be developed for 
multivariate sampling. Additionally, the meta-analytical method 
(quantitative analysis of research results by literature review) (e.g. Guo 
and Gifford, 2002) can also be another potential option for pre-selecting 
the influential covariates for each soil property. Investigations of such 
two approaches would deserve more attentions in the multiple soil 
properties oriented sampling in future. 

In this study, we used existing samples with a good coverage in 
environmental feature space to select samples for the proposed method 
and PS, which is an economic way. Some points were selected as samples 
for two or three sampling methods. This is because some of the extracted 
typical locations representative of variation types for soil properties by 
different sampling methods were overlap over space. 

As previous studies on sampling design for multiple soil properties by 
Vasat et al. (2010) and Szatmari et al. (2016), their proposed sampling 
methods were ‘fully optimal’ for one dominant soil property and ‘sub- 
optimal’ for the others. In our study, we cannot guarantee the designed 
samples are fully optimal for all soil properties either. However, the 
results showed that the prediction accuracy were highest by using 
samples generated by MPRS in most cases. The objective of our method 
is to obtain a set of samples that can represent the relationships between 
different soil properties and corresponding influential environment 
covariates as much as possible in a way based on clustering analysis and 
machine learning. Supported by the proposed concept of the “chain of 
soil properties with their environmental clusters”, the finally selected 
samples from the top ranked chains could better cover typical locations 
of environmental clusters for multiple soil properties. From this aspect, 
our study provided an alternative heuristic approach to design a mul
tiple soil properties oriented sampling method, which was a potential 
effort for improving the soil prediction accuracy. 

5. Conclusions 

This paper proposed a multiple soil properties oriented representa
tive sampling method. This sampling strategy first generated environ
mental clusters for each soil property based on their influential 
environmental covariates, and designed samples that locate on as many 
typical locations of environmental clusters for multiple soil properties 
simultaneously as possible. From the results of the case study, the sets of 
important covariates for different soil properties were different. Parent 
materials, temperature and topography impacted the sand content for 
both surface and subsurface soil, while topography, vegetation impacted 
the SOM at surface soil and topography mainly impacted the SOM at the 
subsurface soil. This confirmed the necessity to consider the difference 
of the influential environmental variable combinations for the multiple 
soil properties oriented sampling design. Compared with the other two 

sampling methods, the proposed sampling method achieved the most 
accurate prediction for four soil properties over different sample sizes in 
most cases. We conclude that the proposed MPRS method is a potential 
effective sampling method for DSM with multiple soil properties. 
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