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A B S T R A C T   

Numerous machine learning models have been developed for constructing the relationship between soil classes 
or properties and its environmental covariates in digital soil mapping (DSM). Most machine learning models are 
trained with a supervised learning (SL) method based on training samples. However, the collected sample data is 
often limited in practice due to that field sampling is expensive and time-consuming. The insufficient samples 
may limit the learning ability of the model to a large extent. Semi-supervised machine learning, a new machine 
learning paradigm that makes use of both unsampled data and a small amount of sampled data in the learning 
process, can be a potential effective method for DSM. In this study, we present a self-training semi-supervised 
learning (SSL) method for DSM. Different with the SL method for machine learning models, the SSL method not 
only utilizes the sampled locations but also the abundant environmental covariate information at the unvisited 
locations. Its basic idea is to iteratively enlarge the training data set by adding the unsampled points with high 
prediction confidence from the unvisited locations until a stopping criterion reached. The proposed SSL method 
was applied in machine learning models for predicting soil classes in Heshan Farm of Nenjiang County in Hei-
longjiang Province, China. Three machine learning models, including multinomial logistic regression (MLR), k- 
nearest neighbor (KNN) and random forest (RF), were selected to evaluate the efficiency of the SSL method. The 
entropy threshold was an important parameter in the SSL method, and a sensitivity analysis on this parameter 
was conducted with using a series of entropy thresholds. The SSL method was compared with the SL method for 
the three machine learning models for soil prediction. A cross-validation was employed to evaluate the accuracy 
of the predicted soil class maps generated based on each method. The results showed that the prediction ac-
curacies (the proportion of the correctly predicted samples over the total number of validation samples) of the 
SSL method were higher than those of the SL method for MLR, KNN, and RF by 5.9%, 12.2%, and 6.0%, 
respectively. RF-SSL was the most accurate model in the study area, followed by KNN-SSL. Meanwhile, the self- 
training SSL method for the KNN model had the largest improvement comparing with the other two models. 
Furthermore, the predicted soil maps using the SSL method showed a more reasonable spatial variation pattern of 
soil classes. In the study area, a suitable value of the entropy threshold was 0.8 ~ 1.0. We concluded that the SSL 
method improved the soil prediction accuracy compared with the SL method when applying machine learning 
models for DSM, and thus is a potential efficient method for DSM with limit sample data.   

1. Introduction 

Soil class maps provide essential information for natural resource 
management, environmental and ecological modeling (Arrouays et al., 

2020; Lagacherie, 2008; Lamichhane et al., 2019; McBratney et al., 
2003; Sanchez et al., 2009; Scull et al., 2003). Digital soil mapping 
(DSM) techniques formalize a generic framework for exploring the 
quantitative relationship linking soil to its environmental covariates. 
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This relationship is used to calibrate a model to predict at locations 
where soil information is not available (Lagacherie, 2008; McBratney 
et al., 2003). The quality of the constructed soil-environment relation-
ship and the mapping result are greatly impacted by field samples and 
the predictive methods (de Gruijter et al., 2006). In this paper we mainly 
focus on the predictive methods. 

Numerous methods have been developed for predicting the spatial 
distribution of soil over the past decades. Geostatistical interpolation 
and machine learning are the two major methods. Geostatistical 
methods follow the principle of geostatistics (Matheron, 1963) to model 
the spatial dependence structure of the observed samples with (out) 
accounting for the deterministic trend. Various types of kriging algo-
rithms have been developed (Heuvelink and Webster, 2001), such as 
ordinary kriging (OK) (Rawlins et al., 2011), co-kriging (Goovaerts, 
1997) and regression co-kriging (Heuvelink et al., 2016; Malone et al., 
2014; Mishra et al., 2012; Sun et al., 2012). Machine learning is another 
widely-used method for predicting the spatial variation of soil classes 
and soil properties (Brungard et al., 2015; Heung et al., 2016; Keskin 
et al., 2019; Lamichhane et al., 2019; Scull et al., 2003). Machine 
learning methods are mainly data-driven and they build soil- 
environment relationships based on training samples. Compared with 
geostatistical methods, machine learning does not require rigorous sta-
tistical assumptions about the distribution of soil samples. It can handle 
correlated environmental covariates, which can be either continuous or 
categorical variables. Numerous machine learning models have been 
developed and applied in DSM, including linear models (e.g. Chen et al., 
2020; Kempen et al., 2009; Meersmans et al., 2008; Vasques et al., 
2014), k-nearest neighbor (KNN) (e.g. Mansuy et al., 2014), support 
vector machine (e.g. Kovačević et al., 2010; Were et al., 2015), artificial 
neural networks (e.g. Behrens et al., 2005; Priori et al., 2014; Zhu, 
2000), and ensemble models such as random forest (RF) (e.g. Grimm 
et al., 2008; Hengl et al., 2018; Heung et al., 2014; Li et al., 2021; Ma 
et al., 2020; Stoorvogel et al., 2009; Wiesmeier et al., 2014). 

Most of the current machine learning models employ supervised 
learning (SL) (Russell and Norvig, 1995), of which the basic concept is to 
learn the relationships between the target variable and its independent 
variables based on training samples with their environmental cova-
riates. The supervised learning methods usually require a large number 
of training samples. However, the number of the collected samples is 
often limited in practice due to the labor-intensive field sampling 
campaign (de Gruijter et al., 2006; Webster and Oliver, 1990; Zhu et al., 
2015, 2008). The insufficient sample data may limit the learning ability 
of the supervised learning methods. 

In supervised learning, only the training sample, which is called 
labeled data, is used for model calibration. The environmental infor-
mation of the substantial unsampled locations, which can be called 
unlabeled data, is wasted. One way to improve the machine learning 
model performance is to make use of the unlabeled data. Semi- 
supervised learning (SSL), a new machine learning paradigm that uti-
lizes both the labeled data and a large amount of unlabeled data, is a 
potential effective method with improved learning ability (Chapelle 
et al., 2006; Du et al., 2020; Levatić et al., 2017; Triguero et al., 2015; 
Zhu, 2006). To better understand the difference between supervised and 
semi-supervised learning, we showed an intuitional figure (Fig. 1). The 
figure represents the classification results considering only label data 
and considering both labeled and unlabeled data, respectively. It can be 
seen that both the classification boundaries based on SL and SSL are well 
split the labeled data points, however, the boundary generated by 
considering both the labeled and unlabeled data is better in differenti-
ating the two groups of points than the boundary obtained by only 
considering the labeled data. This illustration shows a better classifica-
tion ability of the semi-supervised learning method. 

Several semi-supervised learning methods have been developed in 
machine learning field, such as self-training (Yarowsky, 1995), co- 
training (Blum and Mitchell, 1998), graph-based algorithms (Blum 
and Chawla, 2001), and semi-supervised support vector machine (Zhu 
and Goldberg, 2009). Self-training or co-training has recently been 
applied in remote sensing studies to improve the image recognition 
capacity (Han et al., 2015, 2018; Romaszewski et al., 2016; Yao et al., 
2016). A semi-supervised weighted support vector machine learning 
method has been proposed by Silva et al. (2017) for land cover class 
mapping. However, there has been very few studies on using 
semi-supervised learning for soil prediction. Du et al. (2020) presented a 
graph-based semi-supervised learning approach for predictive soil class 
mapping with small field sample data, and proved its efficiency in 
improving the prediction accuracy. Yet, a complex graph model 
describing the environmental similarities between sample locations and 
unvisited locations was required. By comparison, self-training is 
adaptable and simple, which can use any machine learning model as the 
base model. It can improve the model by repeatedly enlarging the 
labeled data set from the unlabeled data set. Compared with other SSL 
methods, the self-training method is more concise. Therefore, it is 
desirable to research how to utilize the self-training semi-supervised 
learning to improve the accuracy of predictive soil mapping by engaging 
a large amount of unlabeled data. 

This paper presents a self-training semi-supervised learning method 

Fig. 1. An illustration of the usefulness of unlabeled data. Left one shows the optimal classification boundary only based on labeled data, right one shows the optimal 
boundary with considering both labeled and unlabeled data. 
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for soil class prediction with limited sample data. The next section of this 
paper presents a detailed introduction to the methodology and a case 
study was conducted in Heilongjiang province, China. The self-training 
semi-supervised learning method was compared with the supervised 
learning method for three machine learning models for DSM in the study 
area. 

2. Materials and methodology 

2.1. Study area and data 

The study area is located in Heshan farm of Nenjiang County in 
Heilongjiang Province, China (Fig. 2a). The size of this area is approx-
imately 60 km2. Elevation within the area ranges from 276 to 363 m 
with slope gradient generally under 4◦. The annual temperature is the 
area ranges from − 38 to 36 ◦C, and the annual accumulated temperature 
above 10 ◦C is about 2000–2300 ◦C day. The average annual precipi-
tation is 500–600 mm. Most soils in the area were formed on deposits of 
silt loam loess, except for the valley, where the underlying parent ma-
terial is fluvial deposits. Crops in the area are generally limited to soy-
bean (Glycine Willd.) and wheat (Triticum L.). The land use of this area is 
mainly croplands under mechanized tillage and no organic fertilizer has 
been applied to this area because of the naturally high contents of 
organic matter in the soil of this area. (Miao et al., 2011; Zhu et al., 
2010). 

According to the previous studies on the characteristics of the envi-
ronmental conditions and the soil-environment relationships in this area 
(Yang et al., 2007; Zhu et al., 2010, 2018), some commonly used 
covariates for soil, such as macroclimate, parent materials and vegeta-
tion conditions are overall uniform over this small area. Topographic 
covariates were selected as indicators for the spatial variation of soil in 
the study area. We selected six topographic covariates for digital soil 
mapping. The selected environmental covariates are elevation (m), 
slope gradient (%), plan curvature, profile curvature, relative position 
index (%), and topographic wetness index. A 10-m resolution Digital 
Elevation Model (DEM) (Fig. 2b) was created from a 1:10,000 topo-
graphic map (published by Chinese Bureau of Surveying and Mapping 
(1987)) using the TOPOGRID and TINLATTICE in Arc/Info (Yang et al., 
2007). Slope gradient, contour curvature and profile curvature were 
derived from this DEM. The TWI was calculated according to the method 
of Beven and Kirkby (1979). A multiple flow direction strategy (MFD- 

md) was used to estimate the upslope drainage area in the computation 
of TWI (Qin et al., 2011, 2007). The relative position index was calcu-
lated with the algorithm proposed by Qin et al., 2009. 

One hundred and twenty-nine field samples were collected in the 
study area as shown in Fig. 2b. At each location, a pit was dug and the 
soil expert classified its soil type using a Chinese soil taxonomy system 
(Chinese Soil Taxonomy Research Group, 2001). There are six soil 
classes in this area: Mollic Bori-Udic Cambosols, Typic Hapli-Udic Iso-
humosols, Typic Bori-Udic Cambosols, Lithic Udi-Orthic Primosols, 
Pachic Stagni-Udic Isohumosols, and Fibric Histic-Typic Haplic Stagnic 
Gleyosols. 

2.2. The semi-supervised learning (SSL) problem 

In this section, we present the definition of semi-supervised learning 
(SSL) basic concept and its difference from supervised learning (SL). 
Given the environmental covariates data set X with the size of N × k (N 
is the number of raster cells in a certain study area, k is the number of the 
environmental covariates), and n sample data with their soil classes Y. 
The n samples form the labeled data set Dl =

{
xi, yi|i = 1, 2,⋯, n

}
, 

where xi is a feature vector describing the environmental covariates at 
the ith sample point, yi ∈ {1,2,⋯, c} is the corresponding target class 
label and c is the number of the classes. The labeled data set Dl consists of 
two parts, Xl = (x1, x2,⋯, xn) and Yl =

(
y1, y2,⋯, yn

)
. The unlabeled 

data set is defined as Du =
{

xn+j|j = 1, 2,⋯,m
}
, where m is the number 

of the unlabeled data and equals to N − n, generally m≫n. Du can also be 
regarded as Xu(Xu = X − Xl). 

Formally, the task of SL is to learn a functional relationship f : X ↦→

Y from a training data set Dl. Different from the SL, SSL is intended to 
learn a better model by including unlabeled data set Du rather than using 
only the labeled set Dl. Thus, the training data set in SSL is Dl ∪ Du. 

2.3. The self-training SSL method 

Self-training is a typical self-labeled strategy to tackle the semi- 
supervised learning problem (Triguero et al., 2015). It attempts to 
iteratively enlarge the labeled data set by adding those unlabeled points 
with high prediction confidence based on the trained model, and retrain 
the model with the enlarged labeled data set until a stopping criterion is 
reached. The overview framework of the self-training method is shown 
in Fig. 3. 

Fig. 2. (a) The location of the study area; (b) Digital elevation model (DEM) and field sample points of the study area.  

L. Zhang et al.                                                                                                                                                                                                                                   



Geoderma 384 (2021) 114809

4

The specific procedure of the self-training SSL method was shown as 
follows:  

(1) Use the labeled data set Dl to train the model.  
(2) Use the trained model to predict labels for the unlabeled data set 

Du.  
(3) Calculate the prediction confidence of each unlabeled sample 

point. The prediction confidence represents the level of the 
probability of the correct prediction of an unvisited point. The 
trained model determines the probability of each unlabeled 
sample point belonging to each class. We used the information 
entropy (Shannon, 1948) of the probabilities of all the classes to 
quantitatively determine the prediction confidence of each un-
labeled point. The entropy calculation was as follow: 

Ent(p) = −
∑c

i=1
pilog2pi (1)  

where c is the number of classes, p represents the vector of predicted 
probabilities on all classes that calculated by the trained model. pi is the 
predicted probability of the ith class, and is determined according to the 
selected base model. For example, when using a tree-based model, the 
predicted probability is estimated by the proportion of a certain class at 
the leaf of a decision tree. When using a logistic regression model, it is 
determined by a logistic function of the linear combination of the input 
feature vector (James et al., 2013a; 2013b). The more distinguishing the 
predicted probabilities of the different classes, the smaller the entropy 
value for vector p, indicating a more confident prediction. Thus, the 
unlabeled data with the entropy smaller than a certain user-defined 
threshold can be assigned pseudo-labels. The pseudo-labeled data set 
is denoted as Dp.  

(4) Remove the selected pseudo-labeled data from unlabeled data. 
Du←Du − Dp.  

(5) Combine the pseudo-labeled data into the labeled data set. 
Dl←Dl ∪ Dp.  

(6) Repeat steps (1)-(5) until Du is empty or no example in Du has the 
entropy value derived from the retrained model higher than the 
threshold. 

2.4. Experimental design 

2.4.1. Data pre-processing 
According to the self-training SSL method mentioned in Section 2.3, 

the total dataset consisted of the labeled data set Dl and unlabeled data 
set Du. Dl was the 129 sample points Yl with environmental covariates 
values Xl and their soil class labels in our case study. In order to reduce 
the computational complexity, we selected a random sample set of 10, 
000 raster cells out of the total 596, 158 raster cells in the study area 
(except the cells at the sample locations) as the unlabeled points. The 
unsampled data Du was the unlabeled points with their environmental 
covariates. Table 1 shows the descriptive statistics of the environmental 
covariates at soil sample points (Xl), the 10,000 randomly selected un-
visited points (Xu) and the entire study area. The values of each covar-
iate were scaled to lie between 0 and 100. It can be observed that the 
coverage of the environmental covariate space by Xl and Xu generally 
matched that of the entire study area. Due to the large number of points, 
Xu had a better coverage in environmental covariate space than Xl, and 
the environmental characteristics of Xu was highly consistent with the 
environmental characteristics of the entire study area. 

2.4.2. The base machine learning models and parameter setting 
A base model is needed when applying the self-training SSL. In this 

study, we selected three commonly used models in DSM as base models 
to test the performance of SSL, including multinomial logistic regression 
(MLR), k-nearest neighbor (KNN), and random forest (RF). The three 
models were directly conducted as supervised learning without using 
unlabeled data to compare with the semi-supervised learning models. 
Therefore, six models were trained: MLR-SL, KNN-SL, RF-SL as super-
vised learning models and MLR-SSL, KNN-SSL, RF-SSL as semi- 
supervised learning method. The scikit-learn (Pedregosa et al., 2011) 
and SciPy (Virtanen et al., 2020) packages in Python programming 
language (Pérez et al., 2011) were used to apply models. The following is 
a brief introduction to the three base models and the parameter setting. 

MLR is a classification method that generalizes binomial logistic 
regression to multiclass problems. A logistic function is used that gives 
outputs between 0 and 1 for a linear combination of the input covariates. 
MLR is the most frequently used linear approach for classification pur-
poses of soil (Debella-Gilo and Etzelmüller, 2009; Jafari et al., 2012; 
Kempen et al., 2009). As the simplicity of the MLR model, it does not 
require parameter tuning. 

The second model KNN is a neighbors-based learning method and 
widely used for the agricultural land cover classification (Samaniego 
and Schulz, 2009), forest inventory (Beaudoin et al., 2014; Bernier et al., 
2010) and digital soil mapping (Subburayalu and Slater, 2013). The 
basic principle of KNN is to predict the class of an unobserved point 
based on the predefined number of training samples that have the closest 

Fig. 3. The overall framework of the self-training semi-supervised learning method.  

Table 1 
Statistics of the standardized values of the environmental covariates.   

Xl  Xu  The entire study area 

Min. Median Mean Max. Min. Median Mean Max. Min. Median Mean Max. 

Elevation 0.3 58.4 53.8 96.2 0.0 55.0 53.2 99.2 0.0 55.1 53.0 100.0 
Slope gradient 0.0 17.1 16.9 58.5 0.0 16.9 16.5 98.6 0.0 16.9 16.5 100.0 
Planform curvature 39.8 46.6 46.8 76.5 1.3 46.6 46.8 97.6 0.0 46.6 46.9 100.0 
Profile curvature 35.6 51.5 51.3 63.0 0.7 51.4 51.5 98.4 0.0 51.4 51.5 100.0 
Relative position index 0.0 44.6 45.9 100.0 0.0 38.4 42.7 100.0 0.0 38.1 42.4 100.0 
Topographic wetness index 16.1 28.9 33.8 95.0 0.1 29.0 35.0 99.9 0.0 29.0 35.1 100.0 

Xl: environmental covariates of labeled data (sample points); Xu: environmental covariates of unlabeled data. 
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distance in covariate space to it. The key parameter for the KNN is the 
number of neighbors. It was set to the default value of 5. 

RF is a representative of the state-of-the-art ensemble models. It is an 
extension of Bagging (Breiman, 1996). Bagging applies bootstrap sam-
pling (Efron and Tibshirani, 1993) to obtain the data subsets for training 
the base learners and adopts the voting or averaging strategy for 
aggregating the base learners. The major improvement of RF over 
Bagging is the incorporation of randomized feature selection (Breiman, 
2001). This strategy can effectively reduce the risk of overfitting and 
lead to a better generalization ability. RF has been proved as out-
performed than other machine learning models in many studies (Brun-
gard et al., 2015; Heung et al., 2016; Keskin et al., 2019; Zeraatpisheh 
et al., 2019). There are two important user-defined parameters in the RF. 
The first is the number of covariates that randomly selected for each tree 
building process. We used the rounded down square root of the total 
number of covariates as this parameter value by default (Breiman, 
2001). The second parameter is ntree, which is defined as the number of 
trees to be learned in the forest. We set ntree = 200, for the previous 
studies showed that it is sufficient to obtain stable results when the 
number of trees is larger than 150 (Lopes, 2015; Wadoux et al., 2019). 

In the self-training SSL models, the threshold of entropy needed to be 
set. A sensitivity analysis of the impact of the entropy threshold 
parameter was conducted by setting the entropy threshold from 0.2 to 

2.0 with an interval of 0.2. 

2.4.3. Evaluation of the predicted soil maps based on different models 
Soil class maps could be predicted based on different machine 

learning models. The performance of the models was evaluated by the 
soil prediction accuracy (ACC) based on the validation sample set. It is 
defined as the proportion of the correctly predicted samples over the 
total number of validation samples. The following equation was 
adopted: 

ACC =
1

Nv

∑Nv

i=1
I

(

ŷi, yi

)

(2)  

where Nv is the total number of the validation samples, yi and ŷi are the 
true and predicted soil class for the ith validation sample respectively, 
I(∙) is an indicator function that I(∙) = 1 if ŷi = yi and I(∙) = 0 
otherwise. 

As there is not enough sample data available to create a separate 
validation set, the validation method used in this study was cross- 
validation (Brus et al., 2011). A 5-fold cross-validation was employed. 
The total sample data set was partitioned by stratified split into five 
equal-size disjoint subsets, and 80% of the data (four of the partitions) 
were used to train the model and the remaining 20% data were used for 

Fig. 4. Boxplots of cross-validation (CV) accuracies based on three models (multinomial logistic regression (MLR), k-nearest neighbor (KNN) and random forest (RF)) 
with the supervised learning (SL) method and the semi-supervised learning (SSL) method over different entropy thresholds, boxes marked in gray color for SSL 
represent the highest average CV accuracy at that threshold value. The midline represents the median value. The bottom line of the box represents the 25th percentile 
(Q1) of the values. The top line of the box represents the 75th percentile (Q3) of the values. The bottom whisker represents the range from Q1 – 1.5 * IQR 
(interquartile range) to Q1. The top whisker represents the range from Q3 to Q3 + 1.5 * IQR. The points represent outliers.“ 
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validation. Then 5 runs of this process were performed by using each 
fold for validation once. To reduce the influence of randomness intro-
duced by data split, the 5-fold cross-validation was repeated 100 times. 
The average cross-validation accuracy of the 100 times were taken as the 
results of the validation. Similar validation procedures were adopted in 
many previous studies (Brungard et al., 2015; Heung et al., 2016; 2014; 
Schmidt et al., 2008; Yang et al., 2019). The degree of the accuracy 
improvement of the SSL model compared with the SL model was 
calculated by the improvement ratio of the average cross-validation 
accuracy of the SSL model to the average cross-validation accuracy of 
the SL model. 

3. Results 

3.1. Comparisons of the prediction accuracies 

The boxplots of the cross-validation accuracies for the three models 
with SL and SSL methods are presented in Fig. 4. These results for SSL 
were with a series of entropy thresholds ranging from 0.2 to 2.0 with an 
interval of 0.2. Boxes marked in gray color represent the highest average 
cross-validation accuracy at that threshold value. The average accuracy 
for SSL with KNN and RF was higher than that for SL at all threshold 
values. Yet, the average accuracy for SSL with MLR was not improved 
compared with SL with MLR for the threshold larger than 0.8. The value 
of 0.8 was the optimal threshold for MLR-SSL and KNN-SSL generating 
the highest average accuracy, and 1.0 was the optimal for RF-SSL. Under 
the optimal entropy threshold, the average cross-validation accuracies 
of SSL for MLR, KNN and RF were 0.50, 0.56, and 0.58, respectively, all 
of which were higher than the average accuracies of SL for the three 
machine learning models (0.47 for MLR, 0.50 for KNN, and 0.55 for RF). 
In this case, the self-training SSL method outperformed the SL method 
with an increase of accuracy by 5.9%, 12.2% and 6.0% for MLR, KNN 
and RF models, respectively. Although KNN generated the largest 
improvement, RF was the most accurate model for both SL and SSL. The 
results indicated that taking use of the unlabeled data improved the 
prediction accuracies. As shown in Table 2, a paired t test further shows 
that the accuracy improvement of the self-training SSL method is sta-
tistically significant at the 99% confidence (p-value < 0.01) (except for 
the MLR-SSL with the entropy threshold ≤ 0.6 or ≥ 1.0). 

3.2. The predicted mapping results 

Fig. 5 shows the maps of the predicted soil classes with the six 
models. It can be seen that the generated soil class maps with SL or SSL 
method showed generally similar spatial distribution patterns of soil 
classes for each machine learning model. The difference of the maps 
between model types were larger than between training method (SL or 

SSL). The soil maps with MLR models showed more difference with the 
maps with KNN or RF models. Compared to the predicted map generated 
in the previous study in this study area (Zhu et al., 2010), the soil maps 
based on RF models showed a more reasonable spatial distribution of 
soil classes. As for the comparison between predicted maps generated by 
the SL method and the SSL method, it can be seen that the predicted 
maps generated by the SSL method showed more reasonable than those 
generated by the SL method. For example, the soil type called Lithic Udi- 
Orthic Primosols can be more mapped from MLR-SSL comparing with 
MLR-SL, which is more similar to the previous map generated by the 
expert knowledge (Zhu et al., 2010). The maps generated with the SSL 
method showed a smoother effect and soil spatial distribution patterns 
become less speckled in appearance, which is an expected behavior 
consequence of using unlabeled data. 

4. Discussion 

4.1. Impact of the entropy threshold for SSL 

The entropy threshold is an important parameter in the proposed SSL 
method. Fig. 6 shows the accuracy improvement of the self-training SSL 
relative to SL for the three models over different entropy threshold 
values. It shows that the entropy threshold had an important impact on 
prediction accuracy. Yet the impact on different machine learning 
models was different. The accuracy improvement with the change of the 
entropy threshold had a similar trend for the three models. The three 
improvement curves all had an upward trend from the beginning, then 
achieved the highest point around a threshold of 0.8 ~ 1.0, and then the 
improvement decreased till stable under a threshold larger than 1.4 ~ 
1.6. Both KNN and RF achieved a positive average improvement (larger 
than zero) over different entropy thresholds. The improvement using 
KNN was larger than that using RF at each threshold. For the RF model, 
the overall improvement with different entropy thresholds was rela-
tively more stable with a range from 3.1 to 6.0. However, the accuracy 
improvement for MLR had a sharp decline with the threshold larger than 
0.8. The accuracy improvement for MLR stayed negative starting from 
the threshold equal to 1.0. This was probably because that more wrong 
pseudo-label data were added when the entropy threshold became 
larger with the poor predictive performance of MLR-SL. 

Table 3 shows percentage numbers of the increased (PN-I), decreased 
(PN-D) and equal (PN-E) accuracy with SSL to SL as evaluated based on 
100 times cross-validation for three models over different thresholds of 
entropy. Similar to Fig. 6, KNN-SSL had the highest PN-I, followed by 
RF, and MLR had the lowest. It also can be seen that KNN-SSL guaran-
teed that the PN-I values were all greater than 90% with all entropy 
thresholds, and that of RF-SSL were greater than 85% when the entropy 
threshold was larger than or equaled to 0.8. The PN-I value of MLR-SSL 
was greater than its PN-D value when the threshold was less than or 
equaled to 0.8. 

These results revealed that MLR-SSL was sensitive to the entropy 
threshold, KNN and RF was more robust. It seemed that a moderate 
value of the threshold was suitable for the model. This was consistent 
with a study of (Levatić et al., 2017), on the effect of the threshold on the 
performance of self-training. Their results indicated that a too permis-
sive entropy threshold may include a large number of incorrect pseudo- 
labeled data, thus may lead to a worse performance, while a too strict 
threshold does not allow self-training to benefit from the unlabeled data. 
In our case study, 0.8 was an appropriate threshold value for MLR and 
KNN, while 1.0 was the most appropriate for RF. 

4.2. Applicability and limitation of the self-training method 

This paper employed a self-training semi-supervised learning 
method for the first time in soil prediction and mapping. The results 
showed a better performance of the self-training SSL method compared 
with the SL method in a case study with limited training samples. The 

Table 2 
Results of t test for the accuracy improvement of the models with semi- 
supervised learning (SSL) method over various entropy threshold values to the 
models with supervised learning (SL) method.  

Entropy threshold p-value 

MLR KNN RF  

0.2 0.50 2.14× 10− 23  6.43× 10− 8   

0.4 0.46 2.14× 10− 23  1.21× 10− 6   

0.6 0.16 1.12× 10− 41  3.54× 10− 10   

0.8 9.77× 10− 17  4.58× 10− 44  2.99× 10− 12   

1.0 1.00 4.14× 10− 41  7.00× 10− 18   

1.2 1.00 1.80× 10− 20  8.42× 10− 13   

1.4 1.00 2.14× 10− 15  2.62× 10− 11   

1.6 1.00 2.14× 10− 15  2.82× 10− 10   

1.8 1.00 2.14× 10− 15  1.89× 10− 10   

2.0 1.00 2.14× 10− 15  1.89× 10− 10   
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accuracy of the three models (MLR, KNN and RF) were all improved with 
the self-training method, however, the improvement was different for 
the three models. This may due to the following reasons. As MLR is a 

simple linear model, the correctness of the pseudo-label set generated by 
MLR might be relatively low, leading to a low improvement of MLR-SSL. 
Our result showed that KNN was a better model than MLR, which was 
consistent with the previous studies (Brungard et al., 2015; Heung et al., 
2016). This led to the correctness of the pseudo-label determined by 
KNN could be relatively larger than that by MLR, which contributed to 
the higher performance gain of the KNN model. For the RF model, it 
achieved the highest performance with SL, and generated a high cor-
rectness of the pseudo-label set leading to the most stable improvement 
of RF. However, the improvement of RF was less than that of KNN. As 
many previous comparative studies have shown that RF was consistently 
the most accurate model across different study areas, maybe it was 
relatively more difficult to have a larger improvement for RF with a high 
accuracy. However, with the self-training SSL method, the predictive 
performance of RF can still be effectively further improved. From the 
result of our case study, RF-SSL is the most accurate model. it is rec-
ommended to adopt RF as the base model when using the self-training 
SSL method. KNN is also an alternative base model with the SSL 
method. For MLR, as its low accuracy with SL, it may have a risk of 
accuracy reduction when using self-training with large entropy 
thresholds. 

Although the self-training SSL method could improve the model 
performance compared to the SL method in most cases, there were still 
cases in which it did not improve the performance, especially for MLR. 
To better understand the potential reason for this, we generated the 
scatter plots between the values of the cross-validation (CV) accuracy of 
the SL method and the values of the improvement of SSL over SL for the 
three models, as shown in Fig. 7. The entropy threshold was set to 0.8 for 

Fig. 5. Predictive mapping of soil classes by using three models (multinomial logistic regression (MLR), k-nearest neighbor (KNN) and random forest (RF)) with 
supervised learning (SL) and semi-supervised learning (SSL) methods. 

Fig. 6. The accuracy improvement of three models (multinomial logistic 
regression (MLR), k-nearest neighbor (KNN) and random forest (RF)) with semi- 
supervised learning (SSL) to supervised learning (SL) over different thresholds 
of entropy. 
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both MLR and KNN, and the threshold was set to 1.0 for RF. It is worth 
noting that there was a clear negative relationship between the SL ac-
curacy and the improvement of accuracy. The situations that the 

accuracy increased significantly mostly occurs when the SL accuracy 
was relatively low. Therefore, it indicated that the proposed self-training 
SSL method was more applicable to the cases with the low SL model 
performance. That is to say, when using a set of training samples that 
make it difficult to train a model with good performance, self-training is 
an effective method for improving accuracy. Meanwhile, it is also can be 
seen that the self-training method could still have the possibility of 
improving the accuracy when the accuracy was relatively high under 
supervised learning, though the improvement may not be significant. 

The entropy threshold is an important user-defined parameter in the 
proposed method and had an important impact on the result. This 
threshold is a tuning parameter and needs to be adjusted when using the 
self-training method. According to the result of the sensitive analysis 
about the threshold, we suggest a reasonable solution to select the 
appropriate threshold is to start with a small value (e.g. 0.1), and then 
increase the threshold step by step with a short interval until the model 
performance cannot be improved. 

In addition, the proposed self-training SSL method is suitable in sit-
uations where field samples are limited. It can be considered as an 
alternative way to further improve the model performance. The self- 
training method has the advantage of being able to be “wrapped” 
around any existing supervised machine learning method as the base 
predictive model and can improve the performance of the base super-
vised learning model by using the abundant unlabeled data. 

5. Conclusions 

This paper developed a self-training semi-supervised learning 
method that used both labeled and unlabeled data for soil class pre-
diction. MLR, KNN, and RF were used as the base machine learning 
models for comparing semi-supervised and supervised learning 
methods. The results showed that the self-training SSL method improved 
the soil prediction accuracy compared with the SL method. RF-SSL was 
the most accurate model in the study area with an average accuracy of 
0.58 at an entropy threshold of 1.0, followed by KNN-SSL. Meanwhile, 
the self-training method for the KNN model had the largest improve-
ment comparing with the other two models. Yet the performance of MLR 
can also be improved with the self-training method, but it needs to be 
more careful with the parameter tuning to avoid a risk of accuracy 
reduction. In our future study, we will focus on improving the algorithm 

Table 3 
Percentage numbers of the increased, decreased and equal accuracy with semi- 
supervised learning (SSL) to supervised learning (SL) in the 100 repeats as 
evaluated based on cross-validation for three models (multinomial logistic 
regression (MLR), k-nearest neighbor (KNN) and random forest (RF)) over 
different thresholds of entropy.  

Model Entropy threshold PN-I (%) PN-D (%) PN-E (%) 

MLR-SSL  0.2 0 0 100  
0.4 2 0 98  
0.6 33 15 52  
0.8 87 12 1  
1.0 10 90 0  
1.2 0 100 0  
1.4 0 100 0  
1.6 10 84 6  
1.8 10 84 6  
2.0 10 84 6 

KNN-SSL  0.2 90 10 0  
0.4 90 10 0  
0.6 97 2 1  
0.8 99 1 0  
1.0 99 1 0  
1.2 95 5 0  
1.4 91 7 2  
1.6 91 7 2  
1.8 91 7 2  
2.0 91 7 2 

RF-SSL  0.2 75 19 6  
0.4 74 22 4  
0.6 74 26 0  
0.8 85 9 6  
1.0 95 3 2  
1.2 88 8 4  
1.4 87 7 6  
1.6 90 7 3  
1.8 91 7 2  
2.0 91 7 2 

PN-I: percentage number of the increased accuracy with SSL to SL in the 100 
repeats; PN-D: percentage number of the decreased accuracy with SSL to SL in 
the 100 repeats; PN-E: percentage number of the equal accuracy with SSL to SL 
in the 100 repeats. 

Fig. 7. The relationship between cross-validation (CV) accuracy and the improvement ratio of semi-supervised learning (SSL) over supervised learning (SL) by 
three models. 
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to reduce the possibility of accuracy reduction, for example, by 
designing a strategy to pre-select the representative unlabeled data to 
avoid the addition of the noise into the model. As for the important 
parameter, entropy threshold, the results showed that a moderate 
threshold, neither too permissive nor strict, could lead to a good per-
formance. The suitable value of the entropy threshold was 0.8 ~ 1.0 in 
the case study. In the future, how to automatically extract the entropy 
threshold value, rather than setting by subjective experience, will be an 
important research question. Finally, we concluded that the self-training 
SSL method is a potential effective and accurate method for DSM with 
limit training sample data. 
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